Attachment III

2.3 Definitions - C

Capability Period: Six-month periods which are established as follows: (i) from May 1 through October 31 of each year ("Summer Capability Period"); and (ii) from November 1 of each year through April 30 of the following year ("Winter Capability Period").

Capability Period Auction: An auction conducted no later than thirty (30) days prior to the start of each Capability Period in which Unforced Capacity may be purchased and sold in a sixmonth strip.

Capability Period SCR Load Zone Peak Hours: The top forty (40) coincident peak hours that, prior to the Summer 2014 Capability Period include hour beginning thirteen through hour beginning eighteen and beginning with the Summer 2014 Capability Period include hour beginning eleven through hour beginning nineteen. The Capability Period SCR Load Zone Peak Hours shall be determined by the NYISO from the Prior Equivalent Capability Period and shall be used by RIPs to report ACL values for the purpose of SCR enrollment. For a SCR enrolled with a Provisional ACL that requires verification data to be reported at the end of the Capability Period in which the SCR was enrolled, the Capability Period SCR Load Zone Peak Hours shall be determined from the Capability Period in which the SCR was enrolled. Such hours shall not include (i) hours in which Special Case Resources located in the specific Load Zone were called by the ISO to respond to a reliability event or test and (ii) hours for which the Emergency Demand Response Program resources were deployed by the ISO in each specific Load Zone. In addition, beginning with the Summer 2014 Capability Period, the NYISO shall not include, in descending rank order of NYCA Load up to a maximum of eight hours per Capability Period, a) the hour before the start time of a reliability event or performance test, in which SCRs located in the specific Load Zone were called by the ISO to respond to a reliability event or performance test, or b) the hour immediately following the end time of such reliability event or performance test.

Capability Year: A Summer Capability Period, followed by a Winter Capability Period (*i.e.*, May 1 through April 30).

Capacity: The capability to generate or transmit electrical power, or the ability to control demand at the direction of the ISO, measured in megawatts ("MW").

Capacity Limited Resource: A Resource that is constrained in its ability to supply Energy above its Normal Upper Operating Limit by operational or plant configuration characteristics. Capacity Limited Resources must register their Capacity limiting characteristics with, and justify them to, the ISO consistent with ISO Procedures. Capacity Limited Resources may submit a schedule indicating that their Normal Upper Operating Limit is a function depending on one or more variables, such as temperature or pondage levels, in which case the Normal Upper Operating Limit applicable at any time shall be determined by reference to that schedule.

Capacity Reservation Cap: The maximum percentage of transmission Capacity from a Transmission Owner's sets of ETCNL that may be converted into ETCNL TCCs or the maximum percentage of a Transmission Owner's RCRRs that may be converted into RCRR

TCCs, as the case may be, as established by the ISO pursuant to Section 19.4.3 of Attachment M of the OATT.

CARL Data: Control Area Resource and Load ("CARL") data submitted by Control Area System Resources to the ISO.

Centralized Transmission Congestion Contracts ("TCC") Auction ("Auction"): The **process** by which TCCs are released for sale for the Centralized TCC Auction period, through a bidding process administered by the ISO or an auctioneer.

Code of Conduct: The rules, procedures and restrictions concerning the conduct of the ISO directors and employees, contained in Attachment F to the ISO Open Access Transmission Tariff.

Commission ("FERC"): The Federal Energy Regulatory Commission, or any successor agency.

Compensable Overgeneration: A quantity of Energy injected over a given RTD interval in which a Supplier has offered Energy that exceeds the Real-Time Scheduled Energy Injection established by the ISO for that Supplier and for which the Supplier may be paid pursuant to this Section and ISO Procedures.

For Suppliers not covered by other provisions of this Section and Intermittent Power Resources depending on wind as their fuel for which the ISO has imposed a Wind Output Limit in the given RTD interval, Compensable Overgeneration shall initially equal three percent (3%) of the Supplier's Normal Upper Operating Limit which may be modified by the ISO if necessary to maintain good Control Performance.

For a Generator which is operating in Start-Up or Shutdown Periods, or Testing Periods, or which is an Intermittent Power Resource that depends on solar energy or landfill gas for its fuel and which has offered its Energy to the ISO in a given interval not using the ISO-committed Flexible or Self-Committed Flexible bid mode, Compensable Overgeneration shall mean all Energy actually injected by the Generator that exceeds the Real-Time Scheduled Energy Injection established by the ISO for that Generator. For a Generator operating in intervals when it has been designated as operating Out of Merit at the request of a Transmission Owner or the ISO, Compensable Overgeneration shall mean all Energy level directed by the Transmission Owner or the ISO.

For Intermittent Power Resources that depend on wind as their fuel and Limited Control Run of River Hydro Resources not using the ISO-Committed Flexible or Self-Committed Flexible bid mode, that were in operation on or before November 18, 1999 within the NYCA, plus an additional 3,300 MW of such Resources, Compensable Overgeneration shall mean that quantity of Energy injected by a Generator, over a given RTD interval that exceeds the Real-Time Scheduled Energy Injection established by the ISO for that Generator and for which the Generator may be paid pursuant to ISO Procedures; provided however, this definition of Compensable Overgeneration shall not apply to an Intermittent Power Resource depending on wind as its fuel for any interval for which the ISO has imposed a Wind Output Limit. For a Generator comprised of a group of generating units at a single location, which grouped generating units are separately committed and dispatched by the ISO, and for which Energy injections are measured at a single location, Compensable Overgeneration shall mean that quantity of Energy injected by the Generator, during the period when one of its grouped generating units is operating in a Start-Up or Shutdown Period, that exceeds the Real-Time Scheduled Energy Injection established by the ISO for that period, for that Generator, and for which the Generator may be paid pursuant to ISO Procedures.

Completed Application: An Application that satisfies all of the information and other requirements for service under the ISO Services Tariff.

Confidential Information: Information and/or data that has been designated by a Customer to be proprietary and confidential, provided that such designation is consistent with the ISO Procedures, the ISO Services Tariff, and the ISO Code of Conduct.

Congestion: A characteristic of the transmission system produced by a constraint on the optimum economic operation of the power system, such that the marginal price of Energy to serve the next increment of Load, exclusive of losses, at different locations on the transmission system is unequal.

Congestion Component: The component of the LBMP measured at a location or the Transmission Usage Charge between two locations that is attributable to the cost of transmission Congestion as is more completely defined in Attachment B of the Services Tariff.

Congestion Rent: The opportunity costs of transmission Constraints on the NYS Transmission System. Congestion Rents are collected by the ISO from Loads through its facilitation of LBMP Market Transactions and the collection of Transmission Usage Charges from Bilateral Transactions.

Congestion Rent Shortfall: A condition in which the Congestion Rent revenue collected by the ISO in the Day-Ahead Market for Energy is less than the amount of Congestion Rent revenue in the Day-Ahead Market for Energy that the ISO is obligated under the ISO OATT to pay out to the Primary Holders of TCCs.

Constraint: An upper or lower limit placed on a variable or set of variables that are used by the ISO in its SCUC, RTC, or RTD programs to control and/or facilitate the operation of the NYS Transmission System.

Contingency: An actual or potential unexpected failure or outage of a system component, such as a Generator, transmission line, circuit breaker, switch or other electrical element. A Contingency also may include multiple components, which are related by situations leading to simultaneous component outages.

Control Area: An electric system or combination of electric power systems to which a common Automatic Generation Control scheme is applied in order to: (1) match, at all times, the power output of the Generators within the electric power system(s) and Capacity and Energy purchased from entities outside the electric power system(s), with the Load within the electric power

system(s); (2) maintain scheduled interchange with other Control Areas, within the limits of Good Utility Practice; (3) maintain the frequency of the electric power system(s) within reasonable limits in accordance with Good Utility Practice; and (4) provide sufficient Capacity to maintain Operating Reserves in accordance with Good Utility Practice.

Control Area System Resource: A set of Resources owned or controlled by an entity within a Control Area that also is the operator of such Control Area. Entities supplying Unforced Capacity using Control Area System Resources will not designate particular Resources as the suppliers of Unforced Capacity.

Control Performance: A standard for measuring the degree to which a Control Area is providing Regulation Service in conformance with NERC requirements.

Controllable Transmission: Any Transmission facility over which power-flow can be directly controlled by power-flow control devices without having to re-dispatch generation.

Commenced Repair: A determination by the ISO that a Market Participant with a Generator i) has decided to pursue the repair of its Generator, and based on the ISO's technical/engineering evaluation ii) has a Repair Plan for the Generator that is consistent with a Credible Repair Plan, and iii) has made appropriate progress in pursuing the repair of its Generator when measured against the milestones of a Credible Repair Plan.

Credible Repair Plan: A Repair Plan that meets the requirements described in Section 5.18.1.4 of this Services Tariff and in ISO Procedures.

Credit Assessment: An assessment of a Customer's creditworthiness, conducted by the ISO in accordance with Section 26.5.3 of Attachment K to this Services Tariff.

Cross-Sound Scheduled Line: A transmission facility that interconnects the NYCA to the New England Control Area at Shoreham, New York and terminates near New Haven, Connecticut.

CTS Enabled Interface: An External Interface at which the ISO has authorized the use of Coordinated Transaction Scheduling ("CTS") market rules and which includes a CTS Enabled Proxy Generator Bus for New York and a CTS Enabled Proxy Generator Bus for the neighboring Control Area.

CTS Enabled Proxy Generator Bus: A Proxy Generator Bus at which the ISO either requires or permits the use of CTS Interface Bids for Import and Export Transactions in the Real-Time Market and requires the use of Decremental Bids for Wheels Through in the Real-Time Market. A CTS Enabled Proxy Generator Bus at which the ISO permits CTS Interface Bids will also permit Decremental and Sink Price Cap Bids.

CTS Interface Bid: A Real-Time Bid provided by an entity engaged in an External Transaction at a CTS Enabled Interface. CTS Interface Bids shall include a MW amount, a direction indicating whether the proposed Transaction is to Import Energy to, or Export Energy from, the New York Control Area, and a Bid Price.

CTS Sink: Representation of the location(s) within a Control Area where energy associated with a CTS Interface Bid is withdrawn. The NYCA CTS Sinks are Proxy Generator Buses.

CTS Sink Price: The price at a CTS Sink.

CTS Source: Representation of the location(s) within a Control Area where energy associated with a CTS Interface Bid is injected. The NYCA CTS Sources are Proxy Generator Buses.

CTS Source Price: The price at a CTS Source.

Curtailment or Curtail: A reduction in Firm or Non-Firm Transmission Service in response to a transmission Capacity shortage as a result of system reliability conditions.

Curtailment Customer Aggregator: A Curtailment Services Provider that produces real-time verified reductions in NYCA load of at least 100 kW through contracts with retail end-users. The procedure for qualifying as a Curtailment Customer Aggregator is set forth in ISO procedures.

Curtailment Initiation Cost: The fixed payment, separate from a variable Demand Reduction Bid, required by a qualified Demand Reduction Provider in order to cover the cost of reducing demand.

Curtailment Services Provider: A qualified entity that can produce real-time, verified reductions in NYCA Load of at least 100 kW in a single Load Zone, pursuant to the Emergency Demand Response Program and related ISO procedures. The procedure for qualifying as a Curtailment Services Provider is set forth in Section 3 below and in ISO Procedures.

Curtailment Services Provider Capacity: Capacity from a Demand Side Resource nominated by a Curtailment Services Provider for participation in the Emergency Demand Response Program.

Customer: An entity which has complied with the requirements contained in the ISO Services Tariff, including having signed a Service Agreement, and is qualified to utilize the Market Services and the Control Area Services provided by the ISO under the ISO Services Tariff; provided, however, that a party taking services under the Tariff pursuant to an unsigned Service Agreement filed with the Commission by the ISO shall be deemed a Customer.

2.14 Definitions - N

Native Load Customers: The wholesale and retail power customers of the Transmission Owners on whose behalf the Transmission Owners, by statute, franchise, regulatory requirement, or contract, have undertaken an obligation to construct and operate the Transmission Owners' systems to meet the reliable electric needs of such customers.

NCZ Locational Minimum Installed Capacity Requirement: The amount of Capacity that must be electrically located within an NCZ, or possess an approved Unforced Capacity Deliverability Right, designed to ensure that sufficient Energy and Capacity are available in that NCZ and that appropriate reliability criteria are met.

NCZ Study Capability Period: The Summer Capability Period that begins five years from May 1 in a calendar year including an NCZ Study Start Date.

NCZ Study Start Date: September 1 or the next business day thereafter in the calendar year prior to an ICAP Demand Curve Reset Filing Year.

Neptune Scheduled Line: A transmission facility that interconnects the NYCA to the PJM Interconnection LLC Control Area at Levittown, Town of Hempstead, New York and terminates in Sayerville, New Jersey.

NERC: The North American Electric Reliability Council or, as applicable, the North American Electric Reliability Corporation.

Net Auction Revenue: The total amount, in dollars, as calculated pursuant to Section Part 17.5.3.1 of Attachment B, remaining after collection of all charges and allocation of all payments associated with a round of a Centralized TCC Auction or a Reconfiguration Auction. Net Auction Revenue takes into account: (i) revenues from and payments for the award of TCCs in a Centralized TCC Auction or Reconfiguration Auction, (ii) payments to Transmission Owners releasing ETCNL, (iii) payments or charges to Primary Holders selling TCCs, (iv) payments to Transmission Owners releasing Original Residual TCCs, (v) O/R-t-S Auction Revenue Surplus Payments and U/D Auction Revenue Surplus Payments, and (vi) O/R-t-S Auction Revenue Shortfall Charges and U/D Auction Revenue Shortfall Charges. Net Auction Revenue may be positive or negative.

Net Average Coincident Load ("Net ACL"): The effective Average Coincident Load calculated and used by the ISO for a Special Case Resource during a specific month in which a SCR Change of Status was reported for the resource or, beginning with the Summer 2014 Capability Period, an Incremental Average Coincident Load was reported for the resource.

Net Benefits Test: The monthly calculations performed by the ISO in accordance with Section 4.2.1.9 of the ISO Services Tariff and ISO Procedures to determine the Monthly Net Benefit Offer Floor, the threshold price at which the dispatch of demand response resources meets the test required by Commission Order No. 745.

Net Congestion Rent: The total amount, in dollars, as calculated pursuant to Section 17.5.2.1 of Attachment B, remaining after collection of all Congestion-related charges and allocation of all Congestion-related payments associated with the Day-Ahead Market. Net Congestion Rent takes into account: (i) charges and payments for Congestion Rents, (ii) settlements with TCC Primary Holders, (iii) O/R-t-S Congestion Rent Shortfall Charges and U/D Congestion Rent Surplus Payments. Net Congestion Rent may be positive or negative.

Network Integration Transmission Service: The Transmission Service provided under Part 4 of the ISO OATT.

New Capacity Zone ("NCZ"): A single Load Zone or group of Load Zones that is proposed as a new Locality, and for which the ISO shall establish a Demand Curve.

New York City: The electrical area comprised of Load Zone J, as identified in the ISO Procedures.

New York Control Area ("NYCA"): The Control Area that is under the control of the ISO which includes transmission facilities listed in the ISO/TO Agreement Appendices A-1 and A-2, as amended from time-to-time, and generation located outside the NYS Power System that is subject to protocols (<u>e.g.</u>, telemetry signal biasing) which allow the ISO and other Control Area operator(s) to treat some or all of that generation as though it were part of the NYS Power System.

New York Power Pool ("NYPP"): An organization established by agreement (the "New York Power Pool Agreement") made as of July 21, 1966, and amended as of July 16, 1991, by and among Central Hudson Gas & Electric Corporation, Consolidated Edison Company of New York, Inc., Long Island Lighting Company, New York State Electric & Gas Corporation, Niagara Mohawk Power Corporation, Orange and Rockland Utilities, Inc., Rochester Gas and Electric Corporation, and the Power Authority of the State of New York. LIPA became a Member of the NYPP on May 28, 1998 as a result of the acquisition of the Long Island Lighting Company by the Long Island Power Authority.

New York State Bulk Power Transmission Facility: This term shall have the meaning given in Attachment Y to the OATT.

New York State Power System ("NYS Power System"): All facilities of the NYS Transmission System, and all those Generators located within the NYCA or outside the NYCA, some of which may from time-to-time be subject to operational control by the ISO.

New York State Reliability Council ("NYSRC"): An organization established by agreement among the Member Systems to promote and maintain the reliability of the NYS Power System.

New York State Reliability Council Agreement ("NYSRC Agreement"): The agreement which established the NYSRC.

New York State Transmission System ("NYS Transmission System"): The entire New York State electric transmission system, which includes: (1) the Transmission Facilities Under ISO

Operational Control; (2) the Transmission Facilities Requiring ISO Notification; and (3) all remaining transmission facilities within the NYCA.

Non-Competitive Proxy Generator Bus: A Proxy Generator Bus for an area outside of the New York Control Area that has been identified by the ISO as characterized by non-competitive Import or Export prices, and that has been approved by the Commission for designation as a Non-Competitive Proxy Generator Bus. Non-Competitive Proxy Generator Buses are identified in Section 4.4.4 of the Services Tariff., as set forth in Section 4.4.2.2 of the MST

Non-Firm-Point-To-Point Transmission Service: Point-To-Point Transmission Service under the Tariff for which a <u>Transmission</u> Customer is not willing to pay Congestion. Such service is not available in the markets that the NYISO administers. absent constraint under Part 3 of the ISO OATT. Non-Firm-Point-To-Point Transmission Service is available on a stand-alone basis for individual one-hour periods not to exceed twenty-four (24) consecutive hours.

Non-Investment Grade Customer: A Customer that does not meet the criteria necessary to be an Investment Grade Customer, as set forth in Section 26.3 of Attachment K to this Services Tariff.

Non-Utility Generator ("NUG," "Independent Power Producer" or "IPP"): Any entity that owns or operates an electric generating facility that is not included in an electric utility's rate base. This term includes, but is not limited to, cogenerators and small power producers and all other non-utility electricity producers, such as exempt wholesale Generators that sell electricity.

Normal State: The condition that the NYS Power System is in when the Transmission Facilities Under ISO Operational Control are operated within the parameters listed for Normal State in the Reliability Rules. These parameters include, but are not limited to, thermal, voltage, stability, frequency, operating reserve and Pool Control Error limitations.

Normal Upper Operating Limit (UOL_N): The upper operating limit that a Generator indicates it expects to be able to reach, or the maximum amount of demand that a Demand Side Resource expects to be able to reduce, during normal conditions. Each Resource will specify its UOL_N in its Bids which shall be reduced when the Resource requests that the ISO derate its Capacity or the ISO derates the Resource's Capacity. A Normal Upper Operating Limit may be submitted as a function depending on one or more variables, such as temperature or pondage levels, in which case the Normal Upper Operating Limit applicable at any time shall be determined by reference to that schedule.

Northport-Norwalk Scheduled Line: A transmission facility that originates at the Northport substation in New York and interconnects the NYCA to the ISO New England Control Area at the Norwalk Harbor substation in Connecticut.

Notice of Intent to Return: The notice a Supplier with a Generator that is in a Mothball Outage or ICAP Ineligible Forced Outage provides to the ISO, pursuant to ISO Procedures, that gives the date by which it intends to return to the Energy market, which proposed return date shall be no later than the expiration date of the Generator's Mothball Outage or ICAP Ineligible Forced Outage.

NPCC: The Northeast Power Coordinating Council.

NRC: The Nuclear Regulatory Commission or any successor thereto.

NYCA Installed Reserve Margin: The ratio of the amount of additional Installed Capacity required by the NYSRC in order for the NYCA to meet NPCC reliability criteria to the forecasted NYCA upcoming Capability Year peak Load, expressed as a decimal.

NYCA Minimum Installed Capacity Requirement: The requirement established for each Capability Year by multiplying the NYCA peak Load forecasted by the ISO by the quantity one plus the NYCA Installed Reserve Margin.

NYCA Minimum Unforced Capacity Requirement: The Unforced Capacity equivalent of the NYCA Minimum Installed Capacity Requirement.

NYPA: The Power Authority of the State of New York.

NYPA Tax-Exempt Bonds: Obligations of the New York Power Authority, the interest on which is not included in gross income under the Internal Revenue Code.

2.16 Definitions - P

Performance Index: An index, described in ISO Procedures, that tracks a Generator's response to AGC signals from the ISO.

Performance Tracking System: A system designed to report metrics for Generators and Loads which include but are not limited to actual output and schedules. This system is used by the ISO to measure compliance with criteria associated with the provision of Energy and Ancillary Services.

Point-to-Point Transmission Service: The reservation and transmission of Capacity and Energy on either a firm or non-firm-basis from the Point(s) of Receipt to the Point(s) of Delivery under the ISO TariffsPart 3 of the ISO OATT.

Point(s) of Delivery: Point(s) on the NYS Transmission System or Proxy Generator Buses where Energy transmitted by the ISO will be made available to the Transmission Customer under the OATT. The Point(s) of Delivery shall be specified pursuant to ISO Procedures.

Point(s) of Injection ("POI" or "Point of Receipt"): The point(s) on the NYS Transmission System or Proxy Generator Buses where Energy, Capacity and Ancillary Services will be made available to the ISO by the delivering party under the ISO OATT or the ISO Services Tariff. (May be referred to as "Point of Receipt" or similar in some Existing Transmission Agreements.)

Point(s) of Receipt: Point(s) of interconnection on the NYS Transmission System or Proxy Generator Buses where -Energy will be made available to the ISO by the Transmission Customer under the OATT. The Point(s) of Receipt shall be specified pursuant to ISO Procedures.

Point(s) of Withdrawal ("POW" or "Point of Delivery"): The point(s) on the NYS Transmission System or Proxy Generator Buses where Energy, Capacity and Ancillary Services will be made available to the receiving party under the ISO OATT or the ISO Services Tariff. (May be referred to as "Point of Delivery" or similar in some Existing Transmission Agreements.)

Pool Control Error (**"PCE"**): The difference between the actual and scheduled interchange with other Control Areas, adjusted for frequency bias.

Post Contingency: Conditions existing on a system immediately following a Contingency.

Power Exchange ("PE"): A commercial entity meeting the requirements for service under the ISO OATT or the ISO Services Tariff that facilitates the purchase and/or sale of Energy, Unforced Capacity and/or Ancillary Services in a New York Wholesale Market. A PE may transact with the ISO on its own behalf or as an agent for others.

Power Factor: The ratio of real power to apparent power (the product of volts and amperes, expressed in megavolt-amperes, MVA).

Power Factor Criteria: Criteria to be established by the ISO to monitor a Load's use of Reactive Power.

Power Flow: A simulation which determines the Energy flows on the NYS Transmission System and adjacent transmission systems.

Price Adjustment: For each month in the Prior Equivalent Capability Period, the Price Adjustment equals the quotient of dividing (a) the Henry Hub futures gas price for the like month in the succeeding same-season Capability Period by (b) the average Henry Hub spot gas price for that month in the Prior Equivalent Capability Period.

Primary Holder: A Primary Holder of each TCC is the Primary Owner of that TCC or the party that purchased that TCC at the close of the Centralized TCC Auction. With respect to each TCC, a Primary Holder must be: (1) a Transmission Customer that has purchased the TCC in the Centralized TCC Auction, and that has not resold it in that same Auction; (2) a Transmission Customer that has purchased the TCC in a Direct Sale with another Transmission Customer; (3) the Primary Owner who has retained the TCC; or (4) Primary Owners of the TCC that allocated the TCC to certain customers or sold it in the Secondary Market or sold through a Direct Sale to an entity other than a Transmission Customer. The ISO settles Day-Ahead Congestion Rents pursuant to Attachments M and N to the ISO OATT with the Primary Holder of each TCC.

Primary Owner: The Primary Owner of each TCC is the Transmission Owner or other Transmission Customer that has acquired the TCC through conversion of rights under an Existing Transmission Agreement to Grandfathered TCCs (in accordance with Attachment K of the ISO OATT), or through the conversion of Existing Transmission Agreements upon their expiration (in accordance with Attachment B), or the Transmission Owner that acquired the TCC through the ISO's allocation of Original Residual TCCs or through the conversion of ETCNL or an RCRR.

Prior Equivalent Capability Period: The previous same-season Capability Period.

Provisional Average Coincident Load ("Provisional ACL"): Prior to the Summer 2014 Capability Period, the value that may be used in lieu of Average Coincident Load for an eligible Special Case Resource for a maximum duration no greater than three consecutive Capability Periods and only where the SCR (i) has not previously been enrolled with the ISO and (ii) never had interval metering Load data available from the Prior Equivalent Capability Period. Beginning with the Summer 2014 Capability Period, the value that may be used in lieu of ACL for an eligible SCR as provided in Section 5.12.11.1.2 of this Services Tariff. A SCR's Provisional ACL is verified subsequent to each eligible Capability Period pursuant to calculations using the SCR's metered Load values in accordance with Sections 5.12.11.1.1 and 5.12.11.1.2 of this Services Tariff and ISO Procedures. Any Load supported by generation produced from a Local Generator, other behind-the-meter generator, or other supply source located behind the SCR's meter operating during the applicable Capability Period SCR Load Zone Peak Hours may not be included in the SCR's metered Load values reported for the verification of its Provisional ACL. **Proxy Generator Bus**: A proxy bus located outside the NYCA that is selected by the ISO to represent a typical bus in an adjacent Control Area and at which LBMP prices are calculated. The ISO may establish more than one Proxy Generator Bus at a particular Interface with a neighboring Control Area to enable the NYISO to distinguish the bidding, treatment and pricing of products and services at the Interface.

PSC: The Public Service Commission of the State of New York or any successor agency thereto.

PSL: The New York Public Service Law, Public Service Law § 1 <u>et seq</u>. (McKinney 1989 & Supp. 1997-98).

Public Power Entity: An entity which is either (i) a public authority or corporate municipal instrumentality, including a subsidiary thereof, created by the State of New York that owns or operates generation or transmission and that is authorized to produce, transmit or distribute electricity for the benefit of the public, or (ii) a municipally owned electric system that owns or controls distribution facilities and provides electric service, or (iii) a cooperatively owned electric system that owns or controls distribution facilities and provides electric service.

2.18 Definitions - R

Ramp Capacity: The amount of change in the Desired Net Interchange that generation located in the NYCA can support at any given time. Ramp capacity may be calculated for all Interfaces between the NYCA and neighboring Control Areas as a whole or for any individual Interface between the NYCA and an adjoining Control Area.

RCRR TCC: A zone-to-zone TCC created when a Transmission Owner with a RCRR exercises its right to convert the RCRR into a TCC pursuant to Section 19.5.4 of Attachment M of the ISO OATT.

Reactive Power (**MVAr**): The product of voltage and the out-of-phase component of alternating current. Reactive Power, usually measured in MVAr, is produced by capacitors (synchronous condensers), Qualified Non-Generator Voltage Support Resources, and over-excited Generators and absorbed by reactors or under-excited Generators and other inductive devices including the inductive portion of Loads.

Real Power Losses: The loss of Energy, resulting from transporting power over the NYS Transmission System, between the Point of Injection and Point of Withdrawal of that Energy.

Real-Time Bid: A Bid submitted into the Real-Time Commitment before the close of the Real-Time Scheduling Window. A Real-Time Bid shall also include a CTS Interface Bid.

Real-Time Commitment ("RTC"): A multi-period security constrained unit commitment and dispatch model that co-optimizes to solve simultaneously for Load, Operating Reserves and Regulation Service on a least as-bid production cost basis over a two hour and fifteen minute optimization period. The optimization evaluates the next ten points in time separated by fifteen minute intervals. Each RTC run within an hour shall have a designation indicating the time at which its results are posted; "RTC₀₀," "RTC₁₅," "RTC₃₀," and "RTC₄₅" post on the hour, and at fifteen, thirty, and forty-five minutes after the hour, respectively. Each RTC run will produce binding commitment instructions for the periods beginning fifteen and thirty minutes after its scheduled posting time and will produce advisory commitment guidance for the remainder of the optimization period. RTC₁₅ will also establish hourly External Transaction schedules, while all RTC runs may establish 15 minute External Transaction schedules at Variably Scheduled Proxy Generator Buses. Additional information about RTC's functions is provided in Section 4.4.2 of this ISO Services Tariff.

Real-Time Dispatch ("RTD"): A multi-period security constrained dispatch model that cooptimizes to solve simultaneously for Load, Operating Reserves, and Regulation Service on a least-as-bid production cost basis over a fifty, fifty-five or sixty-minute period (depending on when each RTD run occurs within an hour). The Real-Time Dispatch dispatches, but does not commit, Resources, except that RTD may commit, for pricing purposes, Resources meeting Minimum Generation Levels and capable of starting in ten minutes. RTD may also establish 5 minute External Transaction schedules at Dynamically Scheduled Proxy Generator Buses. Real-Time Dispatch runs will normally occur every five minutes. Additional information about RTD's functions is provided in Section 4.4.3 of this ISO Services Tariff. Throughout this ISO Services Tariff the term "RTD" will normally be used to refer to both the Real-Time Dispatch and to the specialized Real-Time Dispatch Corrective Action Mode software.

Real-Time Dispatch–Corrective Action Mode ("RTD-CAM"): A specialized version of the Real-Time Dispatch software that will be activated when it is needed to address unanticipated system conditions. RTD-CAM is described in Section 4.4.4 of this ISO Services Tariff.

Real-Time LBMP: The LBMPs established through the ISO Administered Real-Time Market.

Real-Time Market: The ISO Administered Markets for Energy and Ancillary Services resulting from the operation of the RTC and RTD.

Real-Time Minimum Run Qualified Gas Turbine: One or more gas turbines, offered in the Real-Time Market, which, because of their physical operating characteristics, may qualify for a minimum run time of two hours in the Real-Time Market. Characteristics that qualify gas turbines for this treatment are established by ISO Procedures and include using waste heat from the gas turbine-generated electricity to make steam for the generation of additional electricity via a steam turbine.

Real-Time Scheduled Energy: The quantity of Energy that a Supplier is directed to inject or withdraw in real-time by the ISO. Injections are indicated by positive Base Point Signals and withdrawals are indicated by negative Base Point Signals. Unless otherwise directed by the ISO, Dispatchable Supplier's Real-Time Scheduled Energy is equal to its RTD Base Point Signal, or, if it is providing Regulation Service, to its AGC Base Point Signal, and an ISO Committed Fixed or Self-Committed Fixed Supplier's Real-Time Scheduled Energy is equal to its bid output level in real-time.

Real-Time Scheduling Window: The period of time within which the ISO accepts offers and bids to sell and purchase Energy and Ancillary Services in the Real-Time Market for a given hour which period closes seventy-five (75) minutes before the start of that hour, or eighty-five (85) minutes before the start of that hour for Bids to schedule External Transactions at the Proxy Generator Buses associated with the Cross-Sound Scheduled Line, the Neptune Scheduled Line, the Linden VFT Scheduled Line, or the HTP Scheduled Line.

Reconfiguration Auction: The monthly auction administered by the ISO in which Market Participants may purchase and sell one-month TCCs.

Reduction or Reduce: The partial or complete reduction in Non-Firm Transmission Service as a result of transmission Congestion (either anticipated or actual).

Reference Bus: The location on the NYS Transmission System relative to which all mathematical quantities, including Shift Factors and penalty factors relating to physical operation, will be calculated. The NYPA Marcy 345 kV transmission substation is designated as the Reference Bus.

Reference Month: For purposes of the Net Benefits Test, the calendar month that is twelve months prior to the Study Month.

Regulation Capacity: The Energy or Demand Reduction capability, measured in MW, that a Regulation Service provider offers and/or which it is scheduled to provide for Regulation Service.

Regulation Capacity Market Price: The price for Regulation Capacity determined by the ISO pursuant to section 15.3 of this Services Tariff.

Regulation Capacity Response Rate: The Regulation Capacity a Resource is capable of providing over five minutes, measured in MW/minute which shall not exceed the lowest normal energy response rate provided for the Resource and which must be sufficient to permit that Resource to provide the Regulation Capacity (in MW) offered within a five-minute RTD interval. Reference to a Regulation response rate shall be a reference to the Regulation Capacity Response Rate.

Regulation Movement: The absolute value of the change in Energy or Demand Reduction over a six second interval, measured in MW, that a Regulation Service provider is instructed to deliver for the purpose of providing Regulation Service.

Regulation Movement Market Price: The price for Regulation Movement as determined by the ISO pursuant to section 15.3 of this Services Tariff.

Regulation Movement Multiplier: A factor with the value of ten (10), used with the Regulation Movement Bids, to schedule Regulation Service providers in both the Day-Ahead and Real-Time Energy markets. The ISO calculates the Regulation Movement Multiplier based on the historical relationship between the number of MW of Regulation Capacity that the ISO seeks to maintain in each hour and the number of Regulation Movement MW instructed by AGC in each hour.

Regulation Movement Response Rate: The amount of Regulation Movement a Regulation Service provider is capable of delivering in six seconds which shall not be less than, but can be equal to or greater than, the Regulation Capacity Response Rate equivalent.

Regulation Service: The Ancillary Service defined by the Commission as "frequency regulation" and that is instructed as Regulation Capacity in the Day-Ahead Market and as Regulation Capacity and Regulation Movement in the Real-Time Market as is further described in Section 15.3 of the Services Tariff. Day-Ahead and Real-Time Bids to provide Regulation Service shall include a Bid for Regulation Capacity and a Bid for Regulation Movement. The Regulation Service requirement or target level shall be for MW of Regulation Capacity.

Regulation Service Demand Curve: A series of quantity/price points that defines the maximum Shadow Price for Regulation Service corresponding to each possible quantity of Resources that the ISO's software may schedule to satisfy the ISO's Regulation Service constraint. A single Regulation Service Demand Curve will apply to both the Day-Ahead Market and the Real-Time Market for Regulation Service. The Shadow Price for Regulation Service shall be used to calculate Regulation Service payments under Rate Schedule 3 of this ISO Services Tariff. **Regulation Revenue Adjustment Charge ("RRAC")**: A charge that will be assessed against certain Generators that are providing Regulation Service under Section 15.3.6 of Rate Schedule 3 to this ISO Services Tariff.

Regulation Revenue Adjustment Payment ("RRAP"): A payment that will be made to certain Generators that are providing Regulation Service under Section 15.3.6 of Rate Schedule 3 to this ISO Services Tariff.

Reliability Rules: Those rules, standards, procedures and protocols developed and promulgated by the NYSRC, including Local Reliability Rules, in accordance with NERC, NPCC, FERC, PSC and NRC standards, rules and regulations and other criteria and pursuant to the NYSRC Agreement.

Repair Plan: A work plan, set of actions, and time frame for such actions, that is necessary to repair a Generator and return it to service as described in Section 5.18.1 of this Services Tariff.

Required System Capability: Generation capability required to meet an LSE's peak Load plus Installed Capacity Reserve obligation as defined in the Reliability Rules.

Reserve Performance Index: An index created by the ISO for the purpose of calculating the Day Ahead Margin Assurance Payment pursuant to Attachment J of this Services Tariff made to Demand Side Resources scheduled to provide Operating Reserves in the Day-Ahead Market.

Residual Adjustment: The adjustment made to ISO costs that are recovered through Schedule 1 of the OATT. The Residual Adjustment is calculated pursuant to Schedule 1 of the OATT.

Residual Capacity Reservation Right ("RCRR"): A megawatt of transmission Capacity from one Load Zone to an electrically contiguous Load Zone, each of which is internal to the NYCA, that may be converted into an RCRR TCC by a Transmission Owner allocated the RCRR pursuant to Section 19.5 of Attachment M of the ISO OATT.

Residual Transmission Capacity: The transmission capacity determined by the ISO before, during and after the Centralized TCC Auction which is conceptually equal to the following:

Residual Transmission Capacity = TTC - TRM - CBM - GTR - GTCC - ETCNL

The TCCs associated with Residual Transmission Capacity cannot be accurately determined until the Centralized TCC Auction is conducted.

TTC is the Total Transfer Capability that can only be determined after the Residual Transmission Capacity is known.

GTR is the transmission capacity associated with Grandfathered Rights.

GTCC is the transmission capacity associated with Grandfathered TCCs.

ETCNL is the transmission capacity associated with Existing Transmission Capacity for Native Load.

TRM is the Transmission Reliability Margin.

CBM is the Capacity Benefit Margin.

Resource: An Energy Limited Resource, Generator, Installed Capacity Marketer, Special Case Resource, Intermittent Power Resource, Limited Control Run of River Hydro Resource, municipally-owned generation, System Resource, Demand Side Resource or Control Area System Resource.

Responsible Interface Party ("RIP"): A Customer that is authorized by the ISO to be the Installed Capacity Supplier for one or more Special Case Resources and that agrees to certain notification and other requirements as set forth in this Services Tariff and in the ISO Procedures.

Rest of State: The set of all non-Locality NYCA LBMP Load Zones. As of the 2014/2015 Capability Year, Rest of State includes all NYCA LBMP Load Zones other than LBMP Load Zones G, H, I, J and K.

Retired: A Generator that has permanently ceased operating on or after the effective date of Section 5.18 of this Services Tariff either: i) pursuant to applicable notice; or ii) as a result of the expiration of its Mothball Outage or of its ICAP Ineligible Forced Outage.

Rolling RTC: The RTC run that is used to schedule a given 15-minute External Transaction. The Rolling RTC may be an RTC00, RTC15, RTC30 or RTC45 run.

18 Attachment C -Formulas For Determining Bid Production Cost Guarantee Payments

18.1 Introduction

Ten Bid Production Cost Guarantee (BPCG) payments for eligible Suppliers are described in this attachment: (i) a Day-Ahead BPCG for Generators; (ii) a Day-Ahead BPCG for Imports; (iii) a real-time BPCG for Generators in RTD intervals other than Supplemental Event Intervals ; (iv) a BPCG for Generators for Supplemental Event Intervals; (v) a real-time BPCG for Imports; (vi) a BPCG for long start-up time Generators (i.e., Generators that cannot be scheduled by SCUC to start up in time for the next Dispatch Day) whose start is aborted by the ISO prior to their dispatch; (vii) a BPCG for Demand Reduction in the Day-Ahead Market; (viii) a Special Case Resources BPCG; (ix) a BPCG for Demand Side Resources providing synchronized Operating Reserves and / or Regulation Service in the Day-Ahead Market; and (x) a BPCG for Demand Side Resources providing synchronized Operating Reserves and / or Regulation Service in the Real-Time Market. Suppliers shall be eligible for these payments in accordance with the eligibility requirements and formulas established in this Attachment C.

The Bid Production Cost guarantee payments described in this Attachment C are each calculated and paid independently from each other. A Customer's eligibility to receive one type of Bid Production Cost guarantee payment shall have no impact on the Customer's eligibility to be considered to receive another type of Bid Production Cost guarantee payment, in accordance with the rule set forth in this Attachment C.

18.2 Day-Ahead BPCG For Generators

18.2.1 Eligibility to Receive a Day-Ahead BPCG for Generators

18.2.1.1 Eligibility.

A Supplier that bids on behalf of an ISO-Committed Fixed Generator or an ISO Committed Flexible Generator that is committed by the ISO in the Day-Ahead Market shall be eligible to receive a Day-Ahead Bid Production Cost guarantee payment.

18.2.1.2 Non-Eligibility (includes both partial and complete exclusions).

Notwithstanding Section 18.2.1.1,

a Supplier that bids on behalf of an ISO-Committed Fixed Generator or an ISO-Committed Flexible Generator that is committed by the ISO in the Day-Ahead Market shall not be eligible to receive a Day-Ahead Bid Production Cost guarantee payment if that Generator has been committed in the Day-Ahead Market for any other hour of the day as a result of a Self-Committed Fixed or Self-Committed Flexible bid.

18.2.2 Formulas for Determining Day-Ahead BPCG for Generators

18.2.2.1 Applicable Formula. A Supplier's BPCG for a Generator "g" shall be as follows:

Day-Ahead Bid Production Cost Guarantee for Generator g =

$$\max \begin{bmatrix} \sum_{h=1}^{N} \begin{pmatrix} EH_{gh}^{DA} \\ \int C_{gh}^{DA} + MGC_{gh}^{DA} MGH_{gh}^{DA} + SUC_{gh}^{DA} NSUH_{gh}^{DA} \\ MGH_{gh}^{DA} \\ -LBMP_{gh}^{DA} EH_{gh}^{DA} - NASR_{gh}^{DA} \end{pmatrix}, 0 \end{bmatrix}$$

18.2.2.2 Variable Definitions. The terms used in this Section 18.2.2 shall be defined as follows:

Ν	=	number of hours in the Day-Ahead Market day;
$\mathrm{EH_{gh}}^{\mathrm{DA}}$	=	Energy scheduled Day-Ahead to be produced by Generator g in hour h expressed in terms of MWh;
MGH _{gh} ^{DA}	=	Energy scheduled Day-Ahead to be produced by the minimum generation segment of Generator g in hour h expressed in terms of MWh;
$C_{gh}^{\ \ DA}$	=	Bid cost submitted by Generator g, or when applicable the mitigated Bid cost curve for Generator g, in the Day-Ahead Market for hour h expressed in terms of \$/MWh;
MGC _{gh} ^{DA}	=	Minimum Generation Bid by Generator g, or when applicable the mitigated Minimum Generation Bid for Generator g, for hour h in the Day-Ahead Market, expressed in terms of \$/MWh.
		If Generator g was committed in the Day-Ahead Market, or in the Real- Time Market via Supplemental Resource Evaluation ("SRE"), on the day prior to the Dispatch Day and Generator g has not yet completed the minimum run time reflected in the accepted Bid for the hour in which it was scheduled to start on the day before the Dispatch Day (as mitigated, where appropriate), then Generator g shall have its minimum generation cost set equal to the revenues received for energy produced at its minimum operating level for purposes of calculating a Day-Ahead Bid Production Cost guarantee until Generator g completes the minimum run time reflected in the accepted Bid for the hour in which it was scheduled to start on the day before the Dispatch Day;
SUC _{gh} DA	=	Start-Up Bid by Generator g in hour h, or when applicable the mitigated Start-Up Bid for Generator g, in hour h in the Day-Ahead Market expressed in terms of \$/start; <i>provided, however</i> , that the Start-Up Bid for Generator g in hour h or, when applicable, the mitigated Start-Up Bid, for

Generator g in hour h, may be subject to *pro rata* reduction in accordance with the rules set forth in Section 18.12 of this Attachment C. Bases for *pro rata* reduction include, but are not limited to, failure to be scheduled, and to operate in real-time to produce, in each hour, the MWh specified in the accepted Minimum Generation Bid that was submitted for the first hour of Generator g's Day-Ahead or SRE schedule, and failure to operate for the minimum run time specified in the Bid submitted for the first hour of Generator g's Day-Ahead or SRE schedule.

If Generator g was committed in the Day-Ahead Market, or in the Real-Time Market via SRE, on the day prior to the Dispatch Day, *and* Generator g has not yet completed the minimum run time reflected in the accepted Bid for the hour in which it was scheduled to start on the day before the Dispatch Day (as mitigated, where appropriate) plus the contiguous hour that follows the conclusion of such minimum run time, *then* Generator g shall have its Start-Up Bid set to zero for purposes of calculating a Day-Ahead Bid Production Cost guarantee.

For a long start-up time Generator (*i.e.*, a Generator that cannot be scheduled by SCUC to start up in time for the next Dispatch Day) that is committed by the ISO and runs in real-time, the Start-Up Bid for Generator g in hour h shall be the Generator's Start-Up Bid, or when applicable the mitigated Start-Up Bid for Generator g, for the hour (as determined at the point in time in which the ISO provided notice of the request for start-up):

- $NSUH_{gh}^{DA}$ = number of times Generator g is scheduled Day-Ahead to start up in hour h;
- $LBMP_{gh}^{DA} = Day-Ahead LBMP$ at Generator g's bus in hour h expressed in MWh;

NASR_{gh}^{DA} Net Ancillary Services revenue, expressed in terms of \$, paid to Generator =g as a result of having been committed to produce Energy for the LBMP Market and/or Ancillary Services Day-Ahead in hour h which is computed by summing the following: (1) Voltage Support Service payments received by that Generator for that hour, if it is not a Supplier of Installed Capacity and has been scheduled to operate in that hour; (2) Regulation Service payments made to that Generator for all Regulation Service it is scheduled Day-Ahead to provide in that hour, less that Generator's Day-Ahead Regulation Capacity Bid to provide that amount of Regulation Service in that hour; and (3) payments made to that Generator for providing Spinning Reserve and synchronized 30-Minute Reserve in that hour if it is committed Day-Ahead to provide such reserves in that hour, less that Generator's Day-Ahead Bid to provide Spinning Reserve and synchronized 30-Minute Reserve in that hour.

18.3 **Day-Ahead BPCG For Imports**

18.3.1 **Eligibility to Receive a Day-Ahead BPCG for Imports**

A Supplier that bids an Import that is committed by the ISO in the Day-Ahead Market shall be eligible to receive a Day-Ahead Bid Production Cost guarantee payment.

18.3.2 **BPCG Calculated by Transaction ID**

For purposes of calculating a Day-Ahead Bid Production Cost guarantee payment for an Import under this Section 18.3, the ISO shall treat the Import as being from a single Resource for all hours of the Day-Ahead Market day in which the same Transaction ID is used, and the ISO shall treat the Import as being from a different Resource for all hours of the Day-Ahead Market day in which a different Transaction ID is used.

18.3.3 Formula for Determining Day-Ahead BPCG for Imports

Day-Ahead Bid Production Cost guarantee for Import t by Supplier =

$$\max\left[\sum_{h=1}^{N} \left(\text{DecBid}_{th}^{DA} - \text{LBMP}_{th}^{DA}\right) \bullet \text{SchImport}_{th}^{DA}, 0\right]$$

Where:

Ν	=	number of hours in the Day-Ahead Market day;
DecBid _{th} ^{DA}	=	Decremental Bid, in \$/MWh, supplied for Import t for hour h;
LBMP _{th} ^{DA}	= is the	Day-Ahead LBMP, in \$/MWh, for hour h at the Proxy Generator Bus that source of the Import t and
SchImport _{th} ^{D.}	^A =	total Day-Ahead schedule, in MWh, for Import t in hour h.

18.4 Real-Time BPCG For Generators In RTD Intervals Other Than Supplemental Event Intervals

18.4.1 Eligibility for Receiving Real-Time BPCG for Generators in RTD Intervals Other Than Supplemental Event Intervals

18.4.1.1 Eligibility.

A Supplier shall be eligible to receive a real-time Bid Production Cost guarantee payment for intervals (excluding Supplemental Event Intervals) if it bids on behalf of:

18.4.1.1.1an ISO-Committed Flexible Generator or an ISO-Committed Fixed

Generator that is committed by the ISO in the Real-Time Market; or

- 18.4.1.1.2 a Self-Committed Flexible Generator if the Generator's minimum generation MW level does not exceed its Day-Ahead schedule at any point during the Dispatch Day; or
- 18.4.1.1.3 a Generator committed via SRE, or committed or dispatched by the ISO as Out-of-Merit generation to ensure NYCA or local system reliability for the hours of the day that it is committed via SRE or is committed or dispatched by the ISO as Out-of-Merit generation to meet NYCA or local system reliability without regard to the Bid mode(s) employed during the Dispatch Day, except as provided in Sections 18.4.2 and 18.12, below.

18.4.1.2 Non-Eligibility (includes both partial and complete exclusions).

Notwithstanding Section 18.4.1.1,

a Supplier that bids on behalf of an ISO-Committed Fixed Generator or an ISO-Committed Flexible Generator that is committed by the ISO in the real-time market shall not be eligible to receive a real-time Bid Production Cost guarantee payment if that Generator has been committed in real-time, in any other hour of the day, as the result of a Self-Committed Fixed bid, or a Self-Committed Flexible bid with a minimum operating level that exceeds its Day-Ahead schedule, *provided however*, a Generator that has been committed in real time as a result of a Self-Committed Fixed bid, or a Self-Committed Flexible bid with a minimum operating level that exceeds its Day-Ahead schedule will not be precluded from receiving a real-time Bid Production Cost guarantee payment for other hours of the Dispatch Day, in which it is otherwise eligible, due to these Self-Committed mode Bids if such bid mode was used for: (i) an ISO authorized Start-Up, Shutdown or Testing Period, or (ii) for hours in which such Generator was committed via SRE or committed or dispatched by the ISO as Out-of-Merit to meet NYCA or local system reliability.

18.4.2 Formula for Determining Real-Time BPCG for Generators in RTD Intervals Other Than Supplemental Event Intervals

Real-Time Bid Production Cost Guarantee for Generator g =

$$\max\left[\left(\sum_{i\in M} \begin{pmatrix} \left(\sum_{j\in I_{gi}^{RT},MGI_{gi}^{RT}\right) \\ \int C_{gi}^{RT} + MGC_{gi}^{RT} \cdot \left(MGI_{gi}^{RT} - MGI_{gi}^{DA}\right) \\ -LBMP_{gi}^{RT} \cdot \left(EI_{gi}^{RT} - EI_{gi}^{DA}\right) \\ -\left(NASR_{gi}^{TOT} - NASR_{gi}^{DA}\right) - RRAP_{gi} + RRAC_{gi} \\ +\sum_{j\in L} SUC_{gj}^{RT} \cdot \left(NSUI_{gj}^{RT} - NSUI_{gj}^{DA}\right) \end{pmatrix}\right), 0 \\ \right]$$

where:

 $\mathbf{s}_{\mathbf{i}}$

= number of seconds in RTD interval i;

 C_{gi}^{RT} = Bid cost submitted by Generator g, or when applicable the mitigated Bid cost for Generator g, in the RTD for the hour that includes RTD interval i

		expressed in terms of MWh , except in intervals in which the dispatch of the Generator is constrained by its downward ramp rate for that interval, unless that Generator was scheduled to provide Regulation Service in that interval and its RTD basepoint was less than its AGC basepoint, and except in hours in which the NYISO has increased Generator g's minimum operating level, either (i) at the Generator's request, or (ii) in order to reconcile the ISO's dispatch with the Generator's actual output or to address reliability concerns that arise because the Generator is not following Base Point Signals, in which case C_{gi}^{RT} shall be deemed to be zero;
$MGI_{gi}^{ RT}$	=	metered Energy produced by minimum generation segment of Generator g in RTD interval i expressed in terms of MW;
MGI_{gi}^{DA}	=	Energy scheduled Day-Ahead to be produced by minimum generation segment of Generator g in RTD interval i expressed in terms of MW;
MGC _{gi} ^{RT}	=	Minimum Generation Bid by Generator g, or when applicable the mitigated Minimum Generation Bid for Generator g, in the Real-Time Market for the hour that includes RTD interval i, expressed in terms of \$/MWh, which Bid or mitigated Bid may include costs pursuant to Section 4.1.8;
		If Generator g was committed in the Day-Ahead Market, or in the Real- Time Market via Supplemental Resource Evaluation ("SRE"), on the day prior to the Dispatch Day <i>and</i> Generator g has not yet completed the minimum run time reflected in the accepted Bid for the hour in which it was scheduled to start on the day before the Dispatch Day (as mitigated, where appropriate), <i>then</i> Generator g shall have its minimum generation cost set equal to the revenues received for energy produced at its minimum operating level for purposes of calculating a Real-Time Bid Production Cost guarantee until Generator g completes the minimum run time reflected in the accepted Bid for the hour in which it was scheduled to start on the day before the Dispatch Day;
SUC _{gj} ^{RT}	=	Start-Up Bid by Generator g, or when applicable the mitigated Start-Up Bid for Generator g, for hour j into RTD expressed in terms of \$/start, which Bid or mitigated Bid may include costs pursuant to Section 4.1.8;
		provided, however,
		(i) the Start-Up Bid shall be deemed to be zero for (1) Self-Committed Fixed and Self-Committed Flexible Generators, (2) Generators that are economically committed by RTC or RTD that have 10-minute start-up times that are not synchronized and producing Energy within 20 minutes after their scheduled start time, and (3) Generators that are economically committed by RTC that have greater than 10-minute start-up times that are

not synchronized and producing Energy within 45 minutes after their scheduled start time;

(ii) if a Generator has been committed via SRE and its SRE schedule immediately precedes or follows a real-time commitment that did not result from a Day-Ahead commitment, the Generator's Start-Up Bid included in its daily real-time Bid Production Cost guarantee calculation for this contiguous real-time commitment period shall be the Start-Up Bid submitted in response to the SRE request (subject to mitigation, where appropriate); (iii) if a Generator has been committed via SRE and its SRE schedule immediately precedes or follows a real-time schedule that resulted from a Day-Ahead commitment, then the Generator's Start-Up Bid included in its daily real-time Bid Production Cost guarantee calculation for this contiguous real-time commitment period shall be set to zero; (iv) the real-time Start-Up Bid for Generator g for hour j or, when applicable, the mitigated real-time Start-Up Bid, for Generator g for hour j, may be subject to pro rata reduction in accordance with the rules set forth in Section 18.12 of this Attachment C. Bases for pro rata reduction include, but are not limited to, failure to be scheduled and operate in realtime to produce, in each hour, the MWh specified in the accepted Minimum Generation Bid that was submitted for the first hour of Generator g's Day-Ahead or SRE schedule, and failure to operate for the minimum run time specified in the Bid submitted for the first hour of Generator g's Day-Ahead or SRE schedule; and (v) if Generator g was committed in the Day-Ahead Market, or in the Real-Time Market via SRE, on the day prior to the Dispatch Day, and Generator g has not yet completed the minimum run time reflected in the accepted Bid for the hour in which it was scheduled to start on the day before the Dispatch Day (as mitigated, where appropriate) plus the contiguous hour that follows the conclusion of such minimum run time, then Generator g shall have its Start-Up Bid set to zero for purposes of calculating a Real-Time Bid Production Cost guarantee.

- $NSUI_{gi}^{RT}$ = number of times Generator g started up in hour j;
- $NSUI_{gi}^{DA}$ = number of times Generator g is scheduled Day-Ahead to start up in hour j;
- $LBMP_{gi}^{RT} = Real-Time LBMP$ at Generator g's bus in RTD interval i expressed in terms of \$/MWh;
- M = the set of eligible RTD intervals in the Dispatch Day consisting of all of the RTD intervals in the Dispatch Day except:

(i) Supplemental Event Intervals (which are addressed separately in Section 18.5 below);

		(ii) intervals during authorized Start-Up Periods, Shutdown Periods, or Testing Periods for Generator g;
L	=	the set of all hours in the Dispatch Day
$E{I_{gi}}^{RT}$		= either, as the case may be:
		(i) if $EOP_{ig} > AEI_{ig}$ then min(max(AEI _{ig} ,RTSen _{ig}),EOP _{ig}); or
		(ii) if otherwise, then $max(min(AEI_{ig},RTSen_{ig}),EOP_{ig})$.
$\mathrm{EI}_{\mathrm{gi}}^{\mathrm{DA}}$		= Energy scheduled in the Day-Ahead Market to be produced by Generator g in the hour that includes RTD interval i expressed in terms of MW;
RTSen _{ig}		= Real-time Energy scheduled for Generator g in interval i, and calculated as the arithmetic average of the 6-second AGC Base Point Signals sent to Generator g during the course of interval i expressed in terms of MW;
AEI _{ig}		= average Actual Energy Injection by Generator g in interval i but not more than RTSen _{ig} plus any Compensable Overgeneration expressed in terms of MW;
EOP _{ig}		= the Economic Operating Point of Generator g in interval i expressed in terms of MW;
NASR _{gi} ^{TOT}	=	Net Ancillary Services revenue, expressed in terms of \$, paid to Generator g as a result of either having been committed Day-Ahead to operate in the hour that includes RTD interval i or having operated in interval i which is computed by summing the following: (1) Voltage Support Service payments received by that Generator for that RTD interval, if it is not a Supplier of Installed Capacity; (2) Regulation Service payments that would be made to that Generator for that hour based on a Performance Index of 1, less the Regulation Capacity and Regulation Movement Bids placed by that Generator to provide Regulation Service in that hour at the time it was committed to produce Energy for the LBMP Market and/or Ancillary Services to do so; (3) payments made to that Generator for providing Spinning Reserve or synchronized 30-Minute Reserve in that hour, less the Bid placed by that Generator to provide such reserves in that hour at the time it was scheduled to do so; and (4) Lost Opportunity Cost payments made to that Generator in that hour as a result of reducing that Generator's output in order for it to provide Voltage Support Service.

NASR _{gi} ^{DA}	=	The proportion of the Day-Ahead net Ancillary Services revenue, expressed in terms of \$, that is applicable to interval i calculated by multiplying the $NASR_{gh}^{DA}$ for the hour that includes interval i by _{Si} /3600.
RRAP _{gi}	=	Regulation Revenue Adjustment Payment for Generator g in RTD interval i expressed in terms of \$.
RRAC _{gi}	=	Regulation Revenue Adjustment Charge for Generator g in RTD interval i expressed in terms of \$.

18.4.3 Bids Used For Intervals at the End of the Hour

For RTD intervals in an hour that start 55 minutes or later after the start of that hour, a Bid used to determine real-time BPCG in Section 18.4.2 will be the Bid for the next hour in accordance with ISO Procedures. For RTD-CAM intervals in an hour that start 50 minutes or later after the start of that hour, a Bid used to determine real-time BPCG in Section 18.4.2 will be the Bid for the next hour, in accordance with ISO Procedures.

18.5 BPCG For Generators In Supplemental Event Intervals

18.5.1 Eligibility for BPCG for Generators in Supplemental Event Intervals

18.5.1.1 Eligibility

For intervals in which the ISO has called a large event reserve pick-up, as described in Section 4.4.4.1.1 of this ISO Services Tariff, or an emergency under Section 4.4.4.1.2 of this ISO Services Tariff, any Supplier who meets the eligibility requirements for a real-time Bid Production Cost guarantee payment described in subsection 18.4.1.1 of this Attachment C, shall be eligible to receive a BPCG under this Section 18.5.

18.5.1.2 Non-Eligibility

Notwithstanding subsection 18.5.1.1, a Supplier shall not be eligible to receive a Bid Production Cost guarantee payment for Supplemental Event Intervals if the Supplier is not eligible for a real-time Bid Production Cost guarantee payment for the reasons described in Section 18.4.1.2 of this Attachment C.

18.5.1.3 Additional Eligibility

Notwithstanding Section 18.5.1.2, a Supplier shall be eligible to receive a Bid Production Cost guarantee payment for a Generator producing energy during Supplemental Event Intervals occurring as a result of an ISO emergency under Section 4.4.4.1.2 of this ISO Services Tariff regardless of bid mode used for the day.

18.5.2 Formula for Determining BPCG for Generators in Supplemental Event Intervals

Real-Time Bid Production Cost Guarantee Payment for Generator g =

$$\sum_{i \in P} \left(\max \begin{pmatrix} \max \begin{pmatrix} \max \left(EI_{gi}^{RT}, MGI gi \right) \\ \int C_{gi}^{RT} + MGC_{gi}^{RT} \cdot \left(MGI_{gi}^{RT} - MGI_{gi}^{DA} \right) \\ \max \left(EI_{gi}^{DA}, MGI_{gi}^{RT} \right) \\ - LBMP_{gi}^{RT} \cdot \left(EI_{gi}^{RT} - EI_{gi}^{DA} \right) \\ - \left(NASR_{gi}^{TOT} - NASR_{gi}^{DA} \right) - RRAP_{gi} + RRAC_{gi} \end{pmatrix} \right), 0 \end{pmatrix}$$

where:

- P = the set of Supplemental Event Intervals in the Dispatch Day but excluding any intervals in which there are maximum generation pickups or large event reserve pickups where EI_{gi}^{RT} is less than or equal to EI_{gi}^{DA} ; and
- EI_{gi}^{RT} = (i) for any intervals in which there are maximum generation pickups, and the three intervals following, for Generators in the location for which the maximum generation pickup has been called -- the average Actual Energy Injections, expressed in MWh, for Generator g in interval i, and for all other Generators EI_{gi}^{RT} is as defined in Section 18.4.2 above.

(ii) for any intervals in which there are large event reserve pickups and the three intervals following, EI_{gi}^{RT} is as defined in Section 18.4.2 above.

 C_{gi}^{RT} = Bid cost submitted by Generator g, or when applicable the mitigated Bid cost for Generator g, in the RTD for the hour that includes RTD interval i expressed in terms of \$/MWh, except in hours in which the NYISO has increased Generator g's minimum operating level, either (i) at the Generator's request, or (ii) in order to reconcile the ISO's dispatch with the Generator's actual output or to address reliability concerns that arise because the Generator is not following Base Point Signals, in which case C_{gi}^{RT} shall be deemed to be zero;

The definition of all other variables is identical to those defined in Section 18.4 above.

In the event that the ISO re-institutes penalties for poor Regulation Service performance

under Section 15.3.8 of Rate Schedule 3 such penalties will not be taken into account when

calculating supplemental payments under this Attachment C.

18.6 Real-Time BPCG For External Transactions

External Transactions are not eligible to receive Bid Production Cost guarantee payments in the Real-Time Market.

18.6.3 Formula for Determining Real-Time BPCG for Imports

Real-Time Bid Production Cost Guarantee for Import t by a Supplier =

$$Max \left(\sum_{i=1}^{Q} \left[\left(\text{DecBid}_{ii}^{\text{RT}} \text{ LBMP}_{ii}^{\text{RT}} \right) \bullet max \left(\text{SchImport}_{ii}^{\text{RT}} \text{ SchImport}_{ii}^{\text{DA}}, 0 \right) \bullet S_i / 3600 \right], 0 \right)$$

Where:

Q	= number of intervals in the Dispatch Day;
DecBid _{ti} ^{RT}	= Decremental Bid, in \$/MWh, supplied for Import t for interval i;
LBMP _{ti} ^{RT}	= real-time LBMP, in \$/MWh, for interval i at Proxy Generator Bus p which is the source of the Import t;
SchImport _{ii} RT	= total real-time schedule, in MW, for Import t in interval i; and
SchImport _{ti} DA-	= total Day-Ahead schedule, in MW, for Import t in hour that contains interval i.
S _{i,}	_ = number of seconds in RTD interval i.

18.7. BPCG for Long Start-Up Time Generators Whose Starts are Aborted by the ISO Prior to their dispatch

18.7.1 Eligibility for BPCG for Long Start-Up Time Generators Whose Starts Are Aborted by the ISO Prior to their Dispatch

A Supplier that bids on behalf of a long start-up time Generator (i.e., a Generator that cannot be scheduled by SCUC to start up in time for the next Dispatch Day) that is committed by the ISO for reliability purposes as a result of a Supplemental Resource Evaluation and whose start is aborted by the ISO prior to its dispatch, as described in Section 4.2.5 of the ISO Services Tariff, shall be eligible to receive a Bid Production Cost guarantee payment under this Section 18.7.

18.7.2 Methodology for Determining BPCG for Long Start-Up Time Generators Whose Starts are Aborted by the ISO Prior to their Dispatch

A Supplier whose long start-up time Generator's start-up is aborted shall receive a prorated portion of its Start-Up Bid submitted for the hour in which the ISO requested that the Generator begin its start-up sequence, based on the portion of the start-up sequence that it has completed prior to the signal to abort the start-up (*e.g.*, if a long start-up time Generator with a seventy-two (72) hour start-up time has its start-up sequence aborted after forty-eight (48) hours, it would receive two-thirds (2/3) of its Start-Up Bid).

18.8 BPCG For Demand Reduction In The Day-Ahead Market

18.8.1 —Eligibility for BPCG for Demand Reduction in the Day-Ahead Market

A Demand Reduction Provider that bids a Demand Side Resource that is committed by the ISO in the Day-Ahead Market to provide Demand Reduction shall be eligible to receive a Bid Production Cost guarantee payment under this Section 18.8.

18.8.2 Formula for Determining BPCG for Demand Reduction in the Day-Ahead Market

Day-Ahead BPCG for Demand Reduction Provider d =

$$Max \left[\sum_{h=1}^{N} (MinCurCost_{d}^{h} + IncrCurCost_{d}^{h} - CurRev_{d}^{h}) + CurInitCost_{d}, 0\right]$$

where:

$$\operatorname{CurInitCost}_{d} = \left(\sum_{h=1}^{N} \left(\operatorname{Min} \left(\operatorname{ActCur}_{d}^{h}, \operatorname{SchdCur}_{d}^{h} \right) \right) / \left(\sum_{h=1}^{N} \operatorname{SchdCur}_{d}^{h} \right) \right) * \operatorname{CurCost}_{d}$$

 $MinCurCost_{d}^{h} = Min [(max(ActCur_{d}^{h}, 0), MinCur_{d}^{h})] * MinCurBid_{d}^{h}$

$$IncrCurCost_{d}^{h} = \int_{MinCur_{d}^{h}, MinCur_{d}^{h}, ActCur_{d}^{h})}^{MinCur_{d}^{h}, ActCur_{d}^{h})} IncrCurBid_{d}^{h}]$$

 $CurRev_{d}^{h} = LBMP_{dh}^{DA} * min(max(ActCur_{d}^{h}, 0), SchdCur_{d}^{h})$

N=number of hours in the Day-Ahead Market day.CurInitCostd=daily Curtailment Initiation Cost credit for Day-Ahead Demand Reduction
Provider d;

MinCurCost _d ^h	=	minimum Curtailment cost credit for Day-Ahead Demand Reduction Provider d in hour h;
IncrCurCost _d ^h	=	incremental Curtailment cost credit for Day-Ahead Demand Reduction Provider d for hour h;
CurCost _d	=	total bid Curtailment Initiation Costs for Day-Ahead Demand Reduction Provider d for the day;
CurRev _d ^h	=	actual revenue for Day-Ahead Demand Reduction Provider d in hour h;
ActCur _d ^h	=	actual Energy curtailed by Day-Ahead Demand Reduction Provider d in hour h expressed in terms of MWh;
SchdCur _d ^h	=	Energy scheduled Day-Ahead to be curtailed by Day-Ahead Demand Reduction Provider d in hour h expressed in terms of MWh;
MinCurBid ^h	=	minimum Curtailment initiation Bid submitted by Day-Ahead Demand Reduction Provider d for hour h expressed in terms of \$/MWh;
IncrCurBid _d ^h	=	Bid cost submitted by Day-Ahead Demand Reduction Provider d for hour h expressed in terms of \$/MWh;
MinCur _d ^h	=	Energy scheduled Day-Ahead to be produced by the minimum Curtailment segment of Day-Ahead Demand Reduction Provider d for hour h expressed in terms of MWh; and
LBMP _{dh} ^{DA}	=	Day-Ahead LBMP for Day-Ahead Demand Reduction Provider d for hour h expressed in \$/MWh.
18.9 BPCG For Special Case Resources

18.9.1 Eligibility for Special Case Resources BPCG

Any Supplier that bids a Special Case Resource that is committed by the ISO for an event in the Real-Time Market shall be eligible to receive a Bid Production Cost guarantee payment under this Section 18.9. Suppliers shall not be eligible for a Special Case Resource Bid Production Cost guarantee payment for the period over which a Special Case Resource is performing a test.

18.9.2 Methodology for Determining Special Case Resources BPCG

A Special Case Resource Bid Production Cost guarantee payment shall be made when the Minimum Payment Nomination for any Special Case Resource committed by the ISO over the period of requested performance or four (4) hours, whichever is greater, exceeds the LBMP revenue received for performance by that Special Case Resource; provided, however, that the ISO shall set to zero the Minimum Payment Nomination for Special Case Resource Capacity in each interval in which such capacity was scheduled Day-Ahead to provide Operating Reserves, Regulation Service or Energy.

18.10 BPCG For Demand Side Resources Providing Synchronized Operating Reserves and / or Regulation Service In The Day-Ahead Market

18.10.1 Eligibility for BPCG for Demand Side Resources Providing Synchronized Operating Reserves and / or Regulation Service in the Day-Ahead Market

Any Supplier that bids a Demand Side Resource that is committed by the ISO to provide

synchronized Operating Reserves and/or Regulation Service in the Day-Ahead Market shall be

eligible to receive a Bid Production Cost guarantee payment under this Section 18.10.

18.10.2 Formula for Determining BPCG for Demand Side Resources Providing Synchronized Operating Reserves and / or Regulation Service in the Day-Ahead Market

A Bid Production Cost guarantee payment to a Demand Side Resource with a

synchronized Operating Reserves and/or Regulation Service schedule in the Day-Ahead Market

shall be calculated as follows:

BPCG for Demand Side Resource d Providing synchronized Operating Reserves and/or Regulation Service Day-Ahead =

$$\max\left[\left(-\sum_{h=1}^{N} NASR_{dh}^{DA}\right), 0\right]$$

where:

Ν

= number of hours in the Day-Ahead Market day.

NASR_{dh}^{DA} = Net Ancillary Services revenue, in \$, paid to Demand Side Resource d as a result of having been committed to provide Ancillary Services Day-Ahead in hour h which is computed by summing the following: (1) Regulation Service payments made to that Demand Side Resource for all Regulation Service it is scheduled Day-Ahead to provide in that hour, less Demand Side Resource d's Day-Ahead Regulation Capacity Bid to provide that amount of Regulation Service in that hour; and (2) payments made to Demand Side Resource d for providing Spinning Reserve and synchronized 30-Minute Reserve in that hour, less Demand Side Resource d's Day-Ahead Bid to provide Spinning Reserve and synchronized 30-Minute Reserve in that hour, less Demand Side Resource d's Day-Ahead Bid to provide Spinning Reserve and synchronized 30-Minute Reserve in that hour, less Demand Side Resource d's Day-Ahead Bid to provide Spinning Reserve and synchronized 30-Minute Reserve in that hour, less Demand Side Resource d's Day-Ahead Bid to provide Spinning Reserve and synchronized 30-Minute Reserve in that hour, less Demand Side Resource d's Day-Ahead Bid to provide Spinning Reserve and synchronized 30-Minute Reserve in that hour.

18.11 BPCG For Demand Side Resources Providing Synchronized Operating Reserves and / or Regulation Service In The Real-Time Market

18.11.1 Eligibility for BPCG for Demand Side Resources Providing Synchronized Operating Reserves and / or Regulation Service in the Real-Time Market

Any Supplier that bids a Demand Side Resource that is committed by the ISO to provide

synchronized Operating Reserves and/or Regulation Service in the Real-Time Market shall be

eligible to receive a Bid Production Cost guarantee payment under this Section 18.11.

18.11.2 Formula for Determining BPCG for Demand Side Resources Providing Synchronized Operating Reserves and / or Regulation Service in the Real-Time Market

A Bid Production Cost guarantee payment to a Demand Side Resource with a

synchronized Operating Reserves and/or Regulation Service schedule in the real-time Market

shall be calculated as follows:

BPCG for Demand Side Resource d Providing synchronized Operating Reserves and/or Regulation Service in Real-Time =

$$\max\left[-\sum_{i\in L} \left\langle NASR_{di}^{TOT} - NASR_{di}^{DA} \right\rangle, 0\right]$$

where:

L = set of RTD intervals in the Dispatch Day;

NASR_{di}^{TOT} = Net Ancillary Services revenue, in \$, paid to Demand Side Resource d as a result of either having been scheduled Day-Ahead in the hour that includes RTD interval i or having been scheduled in real-time interval i which is computed by summing the following: (1) Regulation Service payments that would be made to Demand Side Resource d for that hour based on a Performance Index of 1, less the Regulation Capacity and Regulation Movement Bids placed by Demand Side Resource d to provide Regulation Service in that hour at the time it was committed to provide Ancillary Services; and (2) payments made to Demand Side Resource d for providing Spinning Reserve or synchronized 30-Minute Reserve in that

hour, less the Bid placed by Demand Side Resource d to provide such reserves in that hour at the time it was scheduled to do so; and

 $NASR_{di}^{DA} =$ The proportion of the Day-Ahead net Ancillary Services revenue, in \$, that is applicable to interval i calculated by multiplying the $NASR_{dh}^{DA}$ for the hour that includes interval i by the quotient of the number of seconds in RTD interval i divided by 3600.

18.12 Proration Of Start-Up Bid For Generators That Are Committed In The Day-Ahead Market, Or Via Supplemental Resource Evaluation

18.12.1 Eligibility to Recover Operating Costs and Resulting Obligations

Generators committed in the Day-Ahead Market or via SRE that are not able to complete their minimum run time within the Dispatch Day in which they are committed are eligible to include in their Start-Up Bid expected net costs of operating on the day following the dispatch day at the minimum operating level specified for the hour in which the Generator is committed, for the hours necessary to complete the Generator's minimum run time.

Generators that receive Day-Ahead or SRE schedules that are not scheduled to operate in real-time, or that do not operate in real-time, at the MW level included in the Minimum Generation Bid for the first hour of the Generator's Day-Ahead or SRE schedule, for the longer of (a) the duration of the Generator's Day-Ahead or SRE schedule, or (b) the minimum run time specified in the Bid that was accepted for the first hour of the Generator's Day-Ahead or SRE schedule, will have the start-up cost component of the Bid Production Cost guarantee calculation prorated in accordance with the formula specified in Section 18.12.2, below. The rules for prorating the start-up cost component of the Bid Production Cost guarantee calculation apply both to operation within the Dispatch Day and to operation on the day following the Dispatch Day to satisfy the minimum run time specified for the hour in which the Generator was scheduled to start-up on the Dispatch Day.

Rules for calculating the reference level that the NYISO uses to test Start-Up Bids for possible mitigation are included in the Market Power Mitigation Measures that are set forth in Attachment H to the ISO Services Tariff. Proration of the start-up cost component of a Generator's Bid Production Cost guarantee based on the Generator's operation in real-time is different/distinct from the mitigation of a Start-Up Bid. 18.12.2 Proration of Eligible Start-Up Cost when a Generator Is Not Scheduled, or Does Not Operate to Meet the Schedule Specified in the Accepted Day-Ahead or SRE Start-Up Bid.

The start-up costs included in the Bid Production Cost guarantee calculation may be

reduced pro rata based on a comparison of the actual MWs delivered in real-time to an hourly

minimum MW requirement. The hourly MWh requirement is determined based on the MW

component of the Minimum Generation Bid submitted for the Generator's accepted start hour (as

mitigated, where appropriate).

18.12.2.1 Total Energy Required to be Provided in Order to Avoid Proration of a Generator's Start-Up Costs

 $TotMWReq_{g,s} = MinOpMW_{g,s} * n_{g,s}$,

Where:

- $TotMWReq_{g,s}$ = Total amount of Energy that Generator g, when started in hour s, must provide for its start-up costs not to be prorated
- $MinOpMW_{g,s} = Minimum operating level (in MW) specified by Generator g in its hour s Bid$
- $n_{g,s}$ = The last hour that Generator g must operate when started in hour s to complete both its minimum run time and its Day-Ahead schedule. The variable $n_{g,s}$ is calculated as follows:

 $n_{g,s} = \max(LastHrDASched_{g,s}, LastMinRunHr_{e,s}),$

Where:

$LastHrDASched_{g,s} =$	The last date/hour in a contiguous set of hours in the Dispatch
	Day, beginning with hour s, in which Generator g is scheduled
	to operate in the Day-Ahead Market
LastMinRunHr _{g,s} =	The last date/hour in a contiguous set of hours in which
-	Generator g would need to operate to complete its minimum run
	time if it starts in hour s

18.12.2.2 Calculation of Prorated Start-Up Cost

$$ProratedSUC_{g,s} = SubmittedSUC_{g,s} \cdot \frac{\sum_{h=s}^{n_{g,s}} MinOpEnergy_{g,h,s}}{TotalMWReq_{g,s}},$$

Where:

ProratedSUC_{g,s} = the prorated start-up cost used to calculate the Bid Production Cost guarantee for Generator g that is scheduled to start in hour s SubmittedSUC_{g,s} = the Start-Up Bid submitted (as mitigated, where appropriate) for Generator g that is scheduled to start in hour s MinOpEnergy_{g,h,s} = the amount of Energy produced during hour h by Generator g during the time required to complete both its minimum run time and its Day-Ahead schedule, if that generator is started in hour s. MinOpEnergy_{g,h,s} is calculated as follows: $MinOpEnergy_{g,h,s} = min(MetActEnergy_{g,h}, MinOpMW_{g,s})$,

Where:

 $MetActEnergy_{g,h} = the metered amount of Energy produced by Generator g during hour h$

18.12.2.3 Additional Rules/Clarifications that Apply to the Calculation of Prorated Start-Up Cost

a. For any hour that a Generator is derated below the minimum operating level specified in

its accepted Start-Up Bid for reliability, either by the ISO or at the request of a

Transmission Owner, the Generator will receive credit for that hour as if the Generator

had produced metered actual MWh equal to its MinOpMW_{g,s}.

b. A Generator must be scheduled and operate in real-time to produce Energy consistent with the MinOpMW_{g,s} specified in the accepted Start-Up Bid for each hour that it is expected to run. *See* Section 18.12.2.1, above. These rules do not specify or require any particular bidding construct that must be used to achieve the desired commitment. However, submitting a self-committed Bid may preclude a Generator from receiving a BPCG. *See, e.g.*, Sections 18.2.1.2.2 and 18.4.1.2.3 of this Attachment C.

26.4 **Operating Requirement and Bidding Requirement**

26.4.1 **Purpose and Function**

The Operating Requirement is a measure of a Customer's expected financial obligations to the ISO based on the nature and extent of that Customer's participation in ISO-Administered Markets. A Customer shall be required to allocate Unsecured Credit, where allowed, and/or provide collateral in an amount equal to or greater than its Operating Requirement. Upon a Customer's written request, the ISO will provide a written explanation for any changes in the Customer's Operating Requirement.

The Bidding Requirement is a measure of a Customer's potential financial obligation to the ISO based upon the bids that Customer seeks to submit in an ISO-administered TCC or ICAP auction. A Customer shall be required to allocate Unsecured Credit, where allowed, and/or provide collateral in an amount equal to or greater than its Bidding Requirement prior to submitting bids in an ISO-administered TCC or ICAP auction.

26.4.2 Calculation of Operating Requirement

The Operating Requirement shall be equal to the sum of (i) the Energy and Ancillary Services Component; (ii) the External Transaction Component; (iii) the UCAP Component; (iv) the TCC Component; (v) the WTSC Component; (vi) the Virtual Transaction Component; (vii) the DADRP Component; and (viii) the DSASP Component where:

26.4.2.1 Energy and Ancillary Services Component

The Energy and Ancillary Services Component shall be equal to:

(a) For Customers without a prepayment agreement, the greater of either:

Basis Amount for Energy and Ancillary Services x 16 Days in Basis Month

Total Charges Incurred for Energy and Ancillary Services for Previous Ten (10) Days x 16 10

(b) For Customers that qualify for a prepayment agreement, subject to the ISO's credit analysis and approval, and execute a prepayment agreement in the form provided in Appendix K-1, the greater of either:

Basis Amount for Energy and Ancillary Services x 3 Days in Basis Month

or-

Total Charges Incurred for Energy and Ancillary Services for Previous Ten (10) Days x 3

- 10
- (c) For new Customers, the ISO shall determine a substitute for the Basis Amount for

Energy and Ancillary Services for use in the appropriate formula above equal to:

EPL x 720 x AEP

where:

EPL = estimated peak Load for the Capability Perio	od; and
--	---------

AEP = average Energy and Ancillary Services price during the Prior Equivalent Capability Period after applying the Price Adjustment.

26.4.2.2 External Transaction Component

The External Transaction Component shall equal the sum of the Customer's (i) Import

Credit Requirement, (ii) Export Credit Requirement, (iii) Wheels Through Credit Requirement,

and (iv) the net amount owed to the ISO for the settled External Transaction Component

Transactions.

26.4.2.2.1 Import Credit Requirement

For a given month, the Import Credit Requirement shall apply to any Customer that Bids to Import in the Day-Ahead Market ("DAM"), excluding Non-Firm Transactions, unless (i) the Customer has at least 50 scheduled Day-Ahead Import Bids in the three-month period ending on the 15th day of the preceding month (or the six-month period ending on the 15th day of the preceding month if the Customer has fewer than 50 scheduled Day-Ahead Import Bids in the immediately preceding three-month period), and (ii) fewer than 25% of the MWhs of such scheduled Day-Ahead Import Bids were settled at a loss to the Customer.

The Import Credit Requirement shall equal the sum of the amounts calculated for each Bid in accordance with the appropriate formulas below:

(1) Upon submission of a DAM Import Bid until posting of the applicable DAM schedule/price.

The ISO will categorize each Import Bid into one of the 18 Import Price Differential (IPD) groups set forth in the IPD chart in Section 26.4.2.2.5 below, as appropriate, based upon the season and time-of-day of the Import Bid. The amount of credit support required in \$/MWh that applies to an Import Bid shall equal the 97th percentile level of the following: the hourly average Energy price calculated in the Real-Time Market at the location associated with the Import Bid, minus the Energy price calculated in the DAM at the same location and time, with the dataset used to perform this calculation consisting of all hours that are in the same IPD group as the hour to which the Import Bid applies, and that occurred no earlier than April 1, 2005 nor later than the end of the calendar month preceding the month to which the Import Bid applies. The amount of credit support required in \$/MWh shall not be less than \$0/MWh. The credit requirement for each Import Bid shall be calculated as follows:

 $\operatorname{Bid}_{\operatorname{MWhB}} * \operatorname{Max} (\operatorname{IPD}_{\operatorname{CS}}, 0)$

Where:

$\operatorname{Bid}_{\operatorname{MWhB}}$	=	the total quantity of MWhs that a Customer Bids to Import in a particular hour and at a particular location.
IPD _{CS}	=	the amount of credit support required, in \$/MWh, for an Import Bid as described above, for the location associated with the Import Bid and for the IPD group that contains the hour to which the Import Bid applies.

(2) Upon posting of the applicable DAM schedule/price until completion of the hour Bid in real-time for a DAM Import Bid.

The credit requirement for each Import Bid shall be calculated as follows:

SchBid_{MWhI} * Max (IPD_{CS}, 0)

Where:

- $SchBid_{MWhI}$ = the total quantity of MWhs that is scheduled in the DAM in a particular hour and at a particular location as a result of the Customer's Import Bid.
- $IPD_{CS} = the amount of credit support required, in $/MWh, for an Import Bid as described above, for the location associated with the Import Bid and for the IPD group that contains the hour to which the Import Bid applies.$
- (3) Upon completion of the hour Bid in real-time for a DAM Import Bid until the net amount owed to the ISO is determined for settled External Transactions.

The credit requirement for each Import Bid shall be calculated as follows:

Max ((BalPay\$ – DAMPay\$), 0)

Where:

BalPay _{\$}	=	(SchBid _{MWhI} – Actual _{MWhI}) * RT LBMP _I
DAMPay _{\$}	=	SchBid _{MWhI} * DAM LBMP _I
SchBid _{MWhI}	=	the total quantity of MWhs that is scheduled in the DAM in a particular hour at a particular location as a result of the Customer's Import Bid.

$Actual_{MWhI}$	=	the total quantity of MWhs that is scheduled in real-time associated with the Customer's Import Bid in a particular hour and at a particular location for the hour completed.
DAM LBMP _I	=	the Day-Ahead LBMP in a particular hour and at a particular location associated with the Customer's Import Bid.
RT LBMP _I	=	the Real-Time LBMP in a particular hour and at a particular location associated with the Customer's Import Bid.

26.4.2.2.2 Export Credit Requirement

The Export Credit Requirement shall apply to any Customer that Bids to Export from the

DAM or Hour-Ahead Market ("HAM"), excluding Non-Firm Transactions.

The Export Credit Requirement shall equal the sum of the amounts calculated for each

Bid in accordance with the appropriate formulas below:

(1) Upon submission of a DAM Export Bid until posting of the applicable DAM <u>schedule/price.</u>

The ISO will categorize each Export Bid into one of the 18 Export Price Differential (EPD) groups set forth in the EPD chart in Section 26.4.2.2.5 below, as appropriate, based upon the season and time-of-day of the Export Bid. The amount of credit support required in \$/MWh that applies to an Export Bid shall equal the 97th percentile level of the following: the Energy price calculated in the DAM at the location associated with the Export Bid, minus the hourly average Energy price calculated in the Real-Time Market at the same location and time, with the dataset used to perform this calculation consisting of all hours that are in the same EPD group as the hour to which the Export Bid applies, and that occurred no earlier than April 1, 2005 nor later than the end of the calendar month preceding the month to which the Export Bid applies. The amount of credit support required in \$/MWh shall not be less than \$0/MWh. The credit requirement for all DAM Export Bids with the same hour/date and

location shall be calculated as follows:

```
(Max ((Max<sub>N</sub>(Bid<sub>MWh</sub> * Bid<sub>$E</sub>)), (BidMax<sub>MWhB</sub> * EPD<sub>CS</sub>)))
```

Where:

$\operatorname{Bid}_{\operatorname{MWh}}$	=	the total quantity of MWhs that a Customer Bids to Export in the DAM in a particular hour and at a particular location at or below each Bid Price.
Bid_{SE}	=	the Bid Price in MWh at which the Customer Bids to purchase the Bid _{MWh} of Exports in a particular hour and at a particular location.
Ν	=	the set of hourly Export Bid Prices in a particular hour and at a particular location.
BidMax _{MWhB}	=	the total quantity of MWhs that a Customer Bids to Export in the DAM in a particular hour and at a particular location.
EPD _{CS}	=	the amount of credit support required, in \$/MWh, for an Export Bid as described above, for the location associated with the Export Bid and for the EPD group that contains the hour to which the Export Bid applies.

(2) Upon posting of the applicable DAM schedule/price until completion of hour Bid in real-time for a DAM Export Bid.

The credit requirement for each Export Bid shall be calculated as follows:

(SchBid_{MWhE} * (Max (EPD_{CS}, DAM LBMP_E)))

Where:

- $SchBid_{MWhE}$ = the total quantity of MWhs that is scheduled in the DAM in a particular hour at a particular location as a result of the Customer's Export Bid.
- EPD_{CS} = the amount of credit support required, in \$/MWh, for an Export Bid as described above, for the location associated with the Export Bid and for the EPD group that contains the hour to which the Export Bid applies.
- $DAM LBMP_E =$ the Day-Ahead LBMP in a particular hour and at a particular location associated with the Customer's Export Bid.

(3) From submission of a HAM Export Bid until completion of the hour Bid in real-time.

i. <u>For non-CTS Interface Bid HAM Bids to Export credit support will</u> <u>be calculated upon submission.</u>

The amount of credit support required in \$/MWh that applies to HAM

Export Bids in the same hour/date and at the same location shall equal the

maximum amount of the payment potentially due to the ISO based on the

MWhs of Exports Bid for purchase at each bid price in a particular hour

and at a particular location.

The credit requirement for all HAM Export Bids with the same hour/date

and location shall be calculated as follows:

 $(Max_N((Max (Bid_{MWhE}, 0)) * Bid_{E}))$

Where:

Bid _{MWhE}	=	the total quantity of MWhs that a Customer Bids to Export in the HAM in a particular hour and at a particular location at or below each bid price minus the MWhs of Exports scheduled in the DAM in the same hour at the same location.
$Bid_{\$E}$	=	the bid price in MWh at which the Customer Bids to purchase the Bid _{MWhE} of Exports in a particular hour and at a particular location.
Ν	=	the set of hourly Export bid prices in a particular hour and at a particular location.

ii. <u>For CTS Interface Bids to Export credit support will be calculated at</u> HAM market close.

The amount of credit support required in \$/MWh that applies to such bid

shall equal the sum of the time-weighted hourly RTC price for each of the

15-minute intervals within the bid hour, not to be less than zero.

The credit requirement for each CTS Interface Bid to Export shall be

calculated as follows:

Max $(\sum_{N} (RTC_{MWhcts} * Bid_{MWhscts} * Hourly Weight), 0)$

Where:

Ν	=	each 15-minute interval within the bid hour.
RTC _{\$/MWhcts}	=	most recently available RTC price for N in \$/MWh at the location associated with the CTS Interface Bid to Export
Bid _{MWhscts}	=	the total quantity of MWhs in a Customer's CTS Interface Bid to Export for N in a particular hour and at a particular location minus the MWhs of Exports scheduled in the DAM in same hour at the same location.
Hourly Weigl	ht =	0.25

(4) Upon completion of the hour Bid in real-time for an Export Bid until the net amount owed to the ISO is determined for settled External Transactions.

The amount of credit support required will equal the sum of the Day-Ahead

Credit Calculation and Real-Time Credit Calculation for each completed hour.

The credit requirement for each Export Bid shall be calculated as follows:

Day-Ahead Credit Calculation + Real-Time Credit Calculation

The Day-Ahead Credit Calculation only applies to DAM Export Bids and the

Real-Time Credit Calculation applies to all HAM Export Bids including HAM

Bids associated with a DAM Bid.

Where:

- Day-Ahead Credit Calculation = Max (Adjusted Export Day-Ahead Credit Calculation, 0)
- Adjusted Export Day-Ahead Credit Calculation = the credit requirement calculated in accordance with section 26.4.2.2.2(2) minus the Balancing Payment.

Balancing Payment = Max ((SchBid_{MWhE} – Actual_{MWhE}), 0) * RT LBMP_E

 $SchBid_{MWhE}$ = the total quantity of MWhs that is scheduled in the DAM in a particular hour and at a particular location as a result of the Customer's Export Bid.

- Actual_{MWhE} = the total quantity of MWhs that is scheduled in real-time associated with the Customer's Export Bid in a particular hour and at a particular location for the hour completed.
- $RT LBMP_E$ = the Real-Time LBMP in a particular hour and at a particular location associated with the Customer's Export Bid.
- Real-Time Credit Calculation = Max ((Max ((Actual_{MWhE} SchBid_{MWhE}),0) * RT LBMP_E), 0)
- Actual_{MWhE} = the total quantity of MWhs that is scheduled in real-time associated with the Customer's Export Bid in a particular hour and at a particular location for the hour completed.
- $SchBid_{MWhE}$ = the total quantity of MWhs that is scheduled in the DAM in a particular hour and at a particular location as a result of the Customer's Export Bid.
- $RT LBMP_E$ = the Real-Time LBMP in a particular hour and at a particular location associated with the Customer's Export Bid.

26.4.2.2.3 Wheels Through Credit Requirement

The Wheels Through Credit Requirement shall apply to any Customer that Bids to

Wheel Through in the DAM or HAM, excluding Non-Firm Transactions.

The Wheels Through Credit Requirement shall equal the sum of the amounts

calculated for each Bid in accordance with the appropriate formulas below:

(1) Upon submission of a DAM Wheels Through Bid until posting of the applicable DAM schedule/price.

The amount of credit support required in \$/MWh that applies to the DAM Wheels

Through Bid shall equal the maximum payment potentially due to the ISO based

on the Customer's Bid Prices on the Bid curve.

The credit requirement for each Wheels Through Bid shall be calculated as

follows:

 $Max\;(Max_N\;(BidPt_{MWhN}*\;Bid\$_{\$/MWhN}),\!0)$

Where:

Ν

= each Bid Price on the Bid curve.

BidPt _{MWhN} =	the MWhs associated v	with the Bid Price on	the Bid curve.
-------------------------	-----------------------	-----------------------	----------------

Bid\$_{\$/MWhN} = the amount that the customer is willing to pay for congestion in \$/MWh on the Bid curve associated with the Customer's Wheels Through Bid.

(2) Upon posting of the applicable Wheels Through DAM schedule/price until completion of the hour Bid in real-time.

The credit requirement for each DAM Wheels Through Bid shall be calculated as

follows:

Max (SchBid_{MWhW} * (DAM LBMP_{POW}-DAM LBMP_{POI}), 0))

Where:

$SchBid_{MWhW}$	= the total quantity of MWhs scheduled in the DAM as a result of the Customer's Bid to schedule Wheels Through.
DAM LBMP _{POI}	= the Day-Ahead LBMP in the hour and at the Point of Injection associated with the Wheels Through Bid.
DAM LBMP _{POW}	= the Day-Ahead LBMP in the hour and at the Point of Withdrawal associated with the Wheels Through Bid.

(3) Upon creation of a HAM Wheels Through Bid until the completion of the hour Bid in real-time.

The amount of credit support required in \$/MWh that applies to HAM Wheels

Through Bid shall equal the price of the maximum value of exposure based on bid

prices on the Bid curve.

The credit requirement for each Wheels Through Bid shall be calculated as

follows:

 $Max(Max_N (Max (BidPt_{MWhW}, 0) * Bid\$_{MWhN}), 0)$

Where:

Ν

= each bid price on the Bid curve.

- $BidPt_{MWhW}$ = the MWhs associated with the bid price on the Bid curve minus the MWhs of the DAM Bid with same hour/date, location and Bid transaction ID.
- Bid\$_{\$/MWhN} = the amount that the customer is willing to pay for congestion in \$/MWh on the Bid curve associated with the Customer's Wheels Through Bid.

(4) Upon completion of the hour Bid in real-time for a Wheels Through Bid until the net amount owed to the ISO is determined for settled External Transactions.

The amount of credit support required will equal the sum of the Day-Ahead

Credit Calculation and Real-Time Credit Calculation for each completed hour.

The credit requirement for each Wheels Through Bid shall be calculated as

follows:

Day-Ahead Credit Calculation + Real-Time Credit Calculation

The Day-Ahead Credit Calculation only applies to DAM Wheels Through Bids

and the Real-Time Credit Calculation applies to all HAM Wheels Through Bids

including HAM Bids associated with a DAM Bid.

Where:

Day-Ahead Credit	t Calculation = Max (Adjusted Wheels Through Day-Ahead Credit Calculation, 0)
Adjusted Wheels	Through Day-Ahead Credit Calculation = the credit requirement calculated in section 26.4.2.2.3(2) minus the Balancing Payment.
Balancing Paymer	$ mt = Max ((SchBid_{MWhW} - Actual_{MWhW}), 0) * (RT LBMP_{POW} - RT LBMP_{POI}) $
SchBid _{MWhW} =	the total quantity of MWhs that is scheduled in the DAM as a result of the Customer's Wheels Through Bid.
Actual _{MWhW} =	the total quantity of MWhs that is scheduled in real-time associated with the Customer's Wheels Through Bid for the hour completed.
$RT LBMP_{POI} =$	the Real-Time LBMP in the hour and at the Point of Injection associated with the Wheels Through Bid.
RT LBMP _{POW} =	the Real-Time LBMP in the hour and at the Point of Withdrawal associated with the Wheels Through Bid.

$\begin{array}{l} \mbox{Real-Time Credit Calculation} = \mbox{Max ((Actual_{MWhW} - SchBid_{MWhW}), 0) * (RT LBMP_{POW} - RT LBMP_{POI}), 0)} \end{array}$

SchBid _{MWhW}	=	the total quantity of MWhs that is scheduled in the DAM as a result of the Customer's Bid to Wheel Through Energy.
Actual _{MWhW}	=	the total quantity of MWhs that is scheduled in real-time associated with the Customer's Wheels Through Bid for the hour completed.
RT LBMP _{POI}	=	the Real-Time LBMP in the hour and at the Point of Injection associated with the Wheels Through Bid.
RT LBMP _{POW}	=	the Real-Time LBMP in the hour and at the Point of Withdrawal associated with the Wheels Through Bid.

26.4.2.2. 4 Calculation of Price Differentials

Import Price Differential (IPD) Groups

	For each
	Generator
Summer	Bus
HB07–10	IPD-1
HB11–14	IPD-2
HB15–18	IPD-3
HB19–22	IPD-4
Weekend/ Holiday (HB07–22)	IPD-5
Night (HB23–06)	IPD-6
Winter	
HB07–10	IPD-7
HB11–14	IPD-8
HB15–18	IPD-9
HB19–22	IPD-10
Weekend/ Holiday (HB07–22)	IPD-11
Night (HB23–06)	IPD-12
Rest-of-Year	
HB07–10	IPD-13
HB11–14	IPD-14
HB15–18	IPD-15
HB19–22	IPD-16
Weekend/ Holiday (HB07–22)	IPD-17
Night (HB23–06)	IPD-18

Where:

Summer = May, June, July, and August

Winter	=	December, January, and February
Rest-of-Year	=	March, April, September, October, and November
HB07–10	=	weekday hours beginning 07:00–10:00
HB11–14	=	weekday hours beginning 11:00–14:00
HB15–18	=	weekday hours beginning 15:00–18:00
HB19–22	=	weekday hours beginning 19:00-22:00
Weekend/Holiday	=	weekend and holiday hours beginning 07:00-22:00
Night	=	all hours beginning 23:00-06:00

Export Price Differential (EPD) Groups

	For each Proxy
	Generator
Summer	Bus
HB07–10	EPD-1
HB11–14	EPD-2
HB15–18	EPD-3
HB19–22	EPD-4
Weekend/ Holiday (HB07–22)	EPD-5
Night (HB23–06)	EPD-6
Winter	
HB07–10	EPD-7
HB11–14	EPD-8
HB15–18	EPD-9
HB19–22	EPD-10
Weekend/ Holiday (HB07–22)	EPD-11
Night (HB23–06)	EPD-12
Rest-of-Year	
HB07–10	EPD-13
HB11–14	EPD-14
HB15–18	EPD-15
HB19–22	EPD-16
Weekend/ Holiday (HB07–22)	EPD-17
Night (HB23–06)	EPD-18

Where:

Summer	=	May, June, July, and August
Winter	=	December, January, and February

Rest-of-Year	=	March, April, September, October, and November
HB07–10	=	weekday hours beginning 07:00-10:00
HB11–14	=	weekday hours beginning 11:00-14:00
HB15–18	=	weekday hours beginning 15:00-18:00
HB19–22	=	weekday hours beginning 19:00-22:00
Weekend/Holiday	=	weekend and holiday hours beginning 07:00-22:00
Night	=	all hours beginning 23:00-06:00

26.4.2.3 UCAP Component

The UCAP Component shall be equal to the total of all amounts then-owed (billed and unbilled) for UCAP purchased in the ISO-administered markets.

26.4.2.4 TCC Component

The TCC Component shall be equal to the greater of either the amount calculated in accordance with Section 26.4.2.4.1 or Section 26.4.2.4.2 below.

26.4.2.4.1 TCC Award Calculation

The sum of the amounts calculated in accordance with the appropriate per TCC termbased formula listed below for TCC purchases less the amounts calculated in accordance with the appropriate per TCC term-based formula listed below for TCC sales; *provided however*, that upon initial award of a TCC until the ISO receives payment for the TCC (or payment for the first year of a two-year TCC), the NYISO will hold the greater of the payment obligation for the TCC or the credit requirement for the TCC calculated in accordance with this Section 26.4.2.4.1.

26.4.2.4.1.1 Two-Year TCCs:

(1) upon initial award of a two-year TCC until completion of the final round of the

current two-year Sub-Auction, the sum of the first year and second year amounts,

which will be calculated as follows:

First Year:

the amount calculated in accordance with the one-year TCC formula set forth in Section 26.4.2.4.1.5 below

where:

Pijt = market clearing price of a one-year TCC in the final round of the one-year Sub-Auction in the prior Capability Period Centralized TCC Auction with the same POI and POW combination as the two-year TCC.

Second Year:

$$+1.909\sqrt{e^{10.9729+.6514\left(\ln\left(p_{ijt}\big|+e\right)\right)+.6633*Zone\,J+1.1607*Zone\,K}}$$

where:

- Pijt = market clearing price of that two-year TCC minus the market clearing price of a one-year TCC in the final round of the one-year Sub-Auction in the prior Capability Period Centralized TCC Auction with the same POI and POW combination as the two-year TCC
- (2) upon completion of the final round of the current two-year Sub-Auction until

completion of the final round of the current one-year Sub-Auction, the sum of the

first year and second year amounts, which will be calculated as follows:

First Year:

the amount calculated in accordance with the one-year TCC formula set forth in Section 26.4.2.4.1.5 below where:

Pijt = market clearing price of a one-year TCC in the final round of the one-year Sub-Auction in the prior Capability Period Centralized TCC Auction with the same POI and POW combination as the two-year TCC Second Year:

+1.909
$$\sqrt{e^{10.9729 + .6514 \left(\ln \left(p_{ijt} \right| + e \right) + .6633 * Zone J + 1.1607 * Zone K}}$$

where:

- Pijt = market clearing price of a two-year TCC in the final round of the current two-year Sub-Auction with the same POI and POW combination as the two-year TCC minus the market clearing price of a one-year TCC in the final round of the one-year Sub-Auction in the prior Capability Period Centralized TCC Auction with the same POI and POW combination as the two-year TCC
- (3) upon completion of the final round of the current one-year Sub-Auction until the

ISO receives payment for the second year of the two-year TCC, the sum of the

first year and second year amounts, which will be calculated as follows:

First Year:

the amount calculated in accordance with the one-year TCC formula set forth in Section 26.4.2.4.1.5 below

where:

Pijt = market clearing price of a one-year TCC in the final round of the current one-year Sub-Auction with the same POI and POW combination as the two-year TCC

Second Year:

+1.909
$$\sqrt{e^{10.9729 + .6514 \left(\ln \left(p_{ijt} \mid + e \right) \right) + .6633 * Zone J + 1.1607 * Zone K}}$$

where:

Pijt = market clearing price of a two-year TCC in the final round of the current two-year Sub-Auction with the same POI and POW combination as the two-year TCC minus the market clearing price of a one-year TCC in the final round of the current one-year Sub-Auction with the same POI and POW combination as the two-year TCC

(4) upon ISO receipt of payment for the second year of the two-year TCC until

commencement of year two of the two-year TCC, the sum of the first year and

second year amounts, which will be calculated as follows:

First Year:

the amount calculated in accordance with the one-year TCC formula set forth in Section 26.4.2.4.1.5 below

where:

Pijt = market clearing price of a one-year TCC in the final round of the one-year Sub-Auction in the prior equivalent Capability Period Centralized TCC Auction with the same POI and POW combination as the two-year TCC

Second Year:

the amount calculated in accordance with the one-year TCC formula set forth in Section 26.4.2.4.1.5 below

where:

- Pijt = market clearing price of a one-year TCC in the final round of the one-year Sub-Auction in the prior equivalent Capability Period Centralized TCC Auction with the same POI and POW combination as the two-year TCC
- (5) upon commencement of year two of a two-year TCC until commencement of the

final six months of the two-year TCC:

the amount calculated in accordance with the one-year TCC formula set forth in Section 26.4.2.4.1.5 below

where:

- Pijt = market clearing price of a one-year TCC in the final round of the most recently completed one-year Sub-Auction with the same POI and POW combination as the two-year TCC
- (6) upon commencement of the final six months of a two-year TCC until

commencement of the final month of the two-year TCC:

the amount calculated in accordance with the six-month TCC formula set forth in Section 26.4.2.4.1.5 below

where:

- Pijt = market clearing price of a six-month TCC in the final round of the most recently completed six-month Sub-Auction with the same POI and POW combination as the two-year TCC
- (7) upon commencement of the final month of a two-year TCC:

the amount calculated in accordance with the one-month TCC formula set forth in Section 26.4.2.4.1.5 below

where:

Pijt = market clearing price of a one-month TCC in the most recently completed monthly reconfiguration auction with the same POI and POW combination as the two-year TCC

26.4.2.4.1.2 One-Year TCCs:

(1) upon initial award of a one-year TCC until completion of the final round of the

current one-year Sub-Auction:

the amount calculated in accordance with the one-year TCC formula set forth in Section 26.4.2.4.1.5 below

(2) upon completion of the final round of the current one-year Sub-Auction until

commencement of the final six months of the one-year TCC:

the amount calculated in accordance with the one-year TCC formula set forth in Section 26.4.2.4.1.5 below

where:

- Pijt = market clearing price of a one-year TCC in the final round of the current one-year Sub-Auction with the same POI and POW combination as the one-year TCC
- (3) upon commencement of the final six months of a one-year TCC until

commencement of the final month of the one-year TCC:

the amount calculated in accordance with the six-month TCC formula set forth in Section 26.4.2.4.1.5 below

where:

- Pijt = market clearing price of a six-month TCC in the final round of the most recently completed six-month Sub-Auction with the same POI and POW combination as the one-year TCC
- (4) upon commencement of the final month of a one-year TCC:

the amount calculated in accordance with the one-month TCC formula set forth in Section 26.4.2.4.1.5 below

where:

Pijt = market clearing price of a one-month TCC in the most recently completed monthly reconfiguration auction with the same POI and POW combination as the one-year TCC

26.4.2.4.1.3 Six-Month TCCs:

(1) upon initial award of a six-month TCC until completion of the final round of the

current six-month Sub-Auction:

the amount calculated in accordance with the six-month TCC formula set forth in Section 26.4.2.4.1.5 below

(2) upon completion of the final round of the current six-month Sub-Auction until

commencement of the final month of a six-month TCC:

the amount calculated in accordance with the six-month TCC formula set forth in Section 26.4.2.4.1.5 below

where:

- Pijt = market clearing price of a six-month TCC in the final round of the current six-month Sub-Auction with the same POI and POW combination as the one-year TCC
- (3) upon commencement of the final month of a six-month TCC:

the amount calculated in accordance with the one-month TCC formula set forth in Section 26.4.2.4.1.5 below

where:

Pijt = market clearing price of a one-month TCC in the most recently completed monthly reconfiguration auction with the same POI and POW combination as the six-month TCC

26.4.2.4.1.4 One-Month TCCs:

upon initial award of a one-month TCC:

the amount calculated in accordance with the one-month TCC formula set forth in Section 26.4.2.4.1.5 below

26.4.2.4.1.5 TCC formulas:

for one-year TCCs, representing a 5% probability curve:

$$+1.909 \sqrt{e^{10.9729 + .6514 \left(\ln \left(p_{ijt} \middle| + e \right) \right) + .6633 * Zone J + 1.1607 * Zone K}} - 1 P_{ijt}$$

for six-month TCCs, representing a 3% probability curve:

+2.565 - 1 P_{ijt}

for one-month TCCs, representing a 3% probability curve:

+2.221
$$\sqrt{e^{11.2682+0.3221(\ln(|p_{ijt}|+e))+1.3734*ZoneJ+2.001*ZoneK+Month}}$$
 - 1 P_{ijt}

where:

Pijt	=	market clearing price of i to j TCC in round t of the auction in which the TCC was purchased;
Zone J	=	1 if TCC sources or sinks but not both in Zone J, zero otherwise;
Zone K	=	1 if TCC sources or sinks but not both in Zone K and does not source or sink in Zone J, 0 otherwise;
Summer	=	1 for six-month TCCs sold in the spring auction, 0 otherwise; and

Month = the following values:

January	=	0
February	=	-0.0201
March	=	0
April	=	0
May	=	0.8181
June	=	0.2835
July	=	0.5201
August	=	0.7221
September	=	0
October	=	0.32
November	=	-0.7681
December	=	0

Provided, however, for purposes of determining the credit holding requirement for a Fixed Price TCC, the market clearing price shall be replaced by the fixed price associated with that Fixed Price TCC, as determined in Section 19.2.1 or Section 19.2.2, of Attachment M as appropriate, of the OATT.

Further, when calculating "Pijt" in Section 26.4.2.4.1, in the event there is no market clearing price for a two-year, one-year, six-month, or one-month TCC in the appropriate prior Capability Period Centralized TCC Auction with the same POI and POW combination as the awarded two-year, one-year, six-month, or one-month TCC, as appropriate, then the market clearing price shall equal a proxy price, assigned by the ISO, for a TCC with like characteristics.

Further, the NYISO may adjust any of the Zone K multipliers in Section 26.4.2.4.1 if, for TCCs of the same duration, the percentage ratio between collateral and congestion rents for Zone K TCCs deviates from the percentage ratio for Zone J TCCs by more than ten percent (10.0%).

26.4.2.4.2 Mark-to-Market Calculation

The projected amount of the Primary Holder's payment obligation to the NYISO, if any, considering the net mark-to-market value of all TCCs in the Primary Holder's portfolio, as defined for these purposes, according to the formula below:

$$\sum_{n \in \mathbb{N}} \left\{ \frac{NAPn}{90} \times RDn \right\} + \sum_{j} ACRn$$

where:

- NAP = the net amount of Congestion Rents between the POI and POW composing each TCC_n during the previous ninety days
- RD = the remaining number of days in the life of TCC_n ; *provided, however,* that in the case of Grandfathered TCCs, RD shall equal the remaining number of days in the life of the longest duration TCC sold in an ISO-administered auction then outstanding;
- N = the set of TCCs held by the Primary Holder; and

ACR = the net amount owed to the ISO for Congestion Rents between the POI and POW composing each TCC_n .

26.4.2.5 WTSC Component

The WTSC Component shall be equal to the greater of either:

Greatest Amount Owed for WTSC During Any Single Month in the Prior Equivalent Capability Period x 50 Days in Month

- or –

Total Charges Incurred for WTSC Based Upon the Most <u>Recent Monthly Data Provided by the Transmission Owner</u> x 50 Days in Month

26.4.2.6 Virtual Transaction Component

The Virtual Transaction Component shall be equal to the sum of the Customer's

(i) Virtual Supply credit requirement ("VSCR") for all outstanding Virtual Supply Bids, plus (ii)

Virtual Load credit requirement ("VLCR") for all outstanding Virtual Load Bids, plus (iii) net

amount owed to the ISO for settled Virtual Transactions.

Where:

VSCR =	$\sum (VSG_{MWh} \times VSG_{CS})$
VLCR =	$\sum (VLG_{MWh} \times VLG_{CS})$
Where:	
$VSG_{MWh} =$	the total quantity of MWhs of Virtual Supply that a Customer Bids for all Virtual Supply positions in the Virtual Supply group
VSG _{CS} =	the amount of credit support required in \$/MWh for the Virtual Supply group
VLG _{MWh} =	the total quantity of MWhs of Virtual Load that a Customer Bids for all Virtual Load positions in the Virtual Load group
VLG _{CS} =	the amount of credit support required in \$/MWh for the Virtual Load group
The ISO will o	categorize each Virtual Supply Bid into one of the 72 Virtual Supply groups

set forth in the Virtual Supply chart below, as appropriate, based upon the season, Load Zone,

and time-of-day of the Virtual Supply Bid. The amount of credit support required in \$/MWh for a Virtual Transaction in a particular Virtual Supply group shall equal the price differential between the Energy price in the Day-Ahead Market and the Energy price in the Real-Time Market, at the 97th percentile, based upon all possible Virtual Supply positions in the Virtual Supply group for the period of time from April 1, 2005, through the end of the preceding calendar month.

The ISO will categorize each Virtual Load Bid into one of the 30 Virtual Load groups set forth in the Virtual Load chart below, as appropriate, based upon the season, Load Zone, and time-of-day of the Virtual Load Bid. The amount of credit support required in \$/MWh for a Virtual Transaction in a particular Virtual Load group shall equal the price differential between the Energy price in the Day-Ahead Market and the Energy price in the Real-Time Market, at the 97th percentile, based upon all possible Virtual Load positions in the Virtual Load group for the period of time from April 1, 2005, through the end of the preceding calendar month.

If a Customer submits Bids for both Virtual Load and Virtual Supply for the same day, hour, and Load Zone, then for those Bids, until such time as those Bids have been evaluated by SCUC, only the greater of the Customer's (i) VLCR for the total MWhs Bid for Virtual Load, or (ii) VSCR for the total MWhs Bid for Virtual Supply will be included when calculating the Customer's Virtual Transaction Component. After evaluation of those Bids by SCUC, then only the credit requirement for the net position of the accepted Bids (in MWhs of Virtual Load or Virtual Supply) will be included when calculating the Customer's Virtual Transaction Component.

Virtual Supply Groups

	Load Zones	Load Zones		
Summer	A–F	G–I	Load Zone J	Load Zone K

HB07–10	VSG-1	VSG-7	VSG-13	VSG-19
HB11–14	VSG-2	VSG-8	VSG-14	VSG-20
HB15–18	VSG-3	VSG-9	VSG-15	VSG-21
HB19–22	VSG-4	VSG-10	VSG-16	VSG-22
Weekend/ Holiday (HB07–22)	VSG-5	VSG-11	VSG-17	VSG-23
Night (HB23–06)	VSG-6	VSG-12	VSG-18	VSG-24
Winter				
HB07–10	VSG-25	VSG-31	VSG-37	VSG-43
HB11–14	VSG-26	VSG-32	VSG-38	VSG-44
HB15–18	VSG-27	VSG-33	VSG-39	VSG-45
HB19–22	VSG-28	VSG-34	VSG-40	VSG-46
Weekend/ Holiday (HB07–22)	VSG-29	VSG-35	VSG-41	VSG-47
Night (HB23–06)	VSG-30	VSG-36	VSG-42	VSG-48
Rest-of-Year				
HB07–10	VSG-49	VSG-55	VSG-61	VSG-67
HB11–14	VSG-50	VSG-56	VSG-62	VSG-68
HB15–18	VSG-51	VSG-57	VSG-63	VSG-69
HB19–22	VSG-52	VSG-58	VSG-64	VSG-70
Weekend/ Holiday (HB07–22)	VSG-53	VSG-59	VSG-65	VSG-71
Night (HB23–06)	VSG-54	VSG-60	VSG-66	VSG-72

Where:

Summer	=	May, June, July, and August
Winter	=	December, January, and February
Rest-of-Year	=	March, April, September, October, and November
HB07–10	=	weekday hours beginning 07:00-10:00
HB11–14	=	weekday hours beginning 11:00-14:00
HB15–18	=	weekday hours beginning 15:00–18:00
HB19–22	=	weekday hours beginning 19:00-22:00
Weekend/Holiday	=	weekend and holiday hours beginning 07:00-22:00
Night	=	all hours beginning 23:00–06:00

Virtual Load Groups

	Load Zones	Load Zones		
Summer	A-F	G-I	Load Zone J	Load Zone K
HB07–10	VLG-1	VLG-4	VLG-8	VLG-12

HB11–14	VLG-2	VLG-5	VLG-9	VLG-13
HB15–18	VLG-2	VLG-6	VLG-10	VLG-14
HB19–22	VLG-1	VLG-4	VLG-8	VLG-15
Weekend/ Holiday (HB07–22)	VLG-3	VLG-4	VLG-8	VLG-16
Night (HB23–06)	VLG-1	VLG-7	VLG-11	VLG-12
Winter				
HB07–10	VLG-17	VLG-19	VLG-21	VLG-23
HB11–14	VLG-17	VLG-20	VLG-21	VLG-23
HB15–18	VLG-18	VLG-19	VLG-22	VLG-24
HB19–22	VLG-17	VLG-20	VLG-21	VLG-24
Weekend/ Holiday (HB07–22)	VLG-17	VLG-20	VLG-21	VLG-23
Night (HB23–06)	VLG-17	VLG-20	VLG-21	VLG-23
Rest-of-Year				
HB07–10	VLG-25	VLG-26	VLG-27	VLG-29
HB11–14	VLG-25	VLG-26	VLG-28	VLG-29
HB15–18	VLG-25	VLG-26	VLG-28	VLG-30
HB19–22	VLG-25	VLG-26	VLG-27	VLG-30
Weekend/ Holiday (HB07–22)	VLG-25	VLG-26	VLG-27	VLG-30
Night (HB23–06)	VLG-25	VLG-26	VLG-27	VLG-29

Where:

Summer	=	May, June, July, and August
Winter	=	December, January, and February
Rest-of-Year	=	March, April, September, October, and November
HB07–10	=	weekday hours beginning 07:00–10:00
HB11–14	=	weekday hours beginning 11:00–14:00
HB15–18	=	weekday hours beginning 15:00–18:00
HB19–22	=	weekday hours beginning 19:00-22:00
Weekend/Holiday	=	weekend and holiday hours beginning 07:00-22:00
Night	=	all hours beginning 23:00-06:00

26.4.2.7 DADRP Component

The DADRP Component shall be equal to the product of: (i) the Demand Reduction Provider's monthly average of MWh of accepted Demand Reduction Bids during the prior summer Capability Period or, where the Demand Reduction Provider does not have a history of accepted Demand Reduction bids, a projected monthly average of the Demand Reduction Provider's accepted Demand Reduction bids; (ii) the average Day-Ahead LBMP at the NYISO Reference Bus during the prior summer Capability Period; (iii) twenty percent (20%); and (iv) a factor of four (4). The ISO shall adjust the amount of Unsecured Credit and/or collateral that a Demand Reduction Provider is required to provide whenever the DADRP Component increases or decreases by ten percent (10%) or more.

26.4.2.8 DSASP Component

The DSASP Component is calculated every two months based on the Demand Side Resource's Operating Capacity available for the scheduling of such services, the delta between the Day-Ahead and hourly market clearing prices for such products in the like two-month period of the previous year, and the location of the Demand Side Resource. Resources located East of Central-East shall pay the Eastern reserves credit support requirement and Resources located West of Central-East shall pay the Western reserves credit support requirement. The DSASP Component shall be equal to:

(a) For Demand Side Resources eligible to offer only Operating Reserves, the product of (i) the maximum hourly Operating Capacity (MW) for which the Demand Side Resource may be scheduled to provide Operating Reserves, (ii) the amount of Eastern or Western reserves credit support, as appropriate, in \$/MW per day, and (iii) three (3) days.

=

Where:

The amount of Eastern reserves credit support (\$/MW/day) for each two-month period Eastern Price Differential for the same two-month period in the previous year * the higher of two (2) or the maximum number of daily Reserve Activations for the same two-month period in the previous year

The amount of Western reserves credit support (\$/MW/day) for each two-month period	=	Western Price Differential for the same two-month period in the previous year * the higher of two (2) or the maximum number of daily Reserve Activations for the same two-month period in the previous year
Two-month periods:	=	January and February March and April May and June July and August September and October November and December
MCP _{SRh}	=	Hourly, time-weighted Market Clearing Price for Spinning Reserves
Eastern Price Differential	=	The hourly differential at the 97 th percentile of all hourly differentials between the Day-Ahead and Real-Time MCPSRh for Eastern Spinning Reserves for hours in the two-month period of the previous year when the Real-Time MCPSRh for Eastern Spinning Reserves exceeded the Day-Ahead MCPSRh for Eastern Spinning Reserves
Western Price Differential	=	The hourly differential at the 97 th percentile of all hourly differentials between the Day-Ahead and Real-Time MCPsSRh for Western Spinning Reserves for hours in the two-month period of the previous year when the Real-Time MCPSRh for Western Spinning Reserves exceeded the Day- Ahead MCPSRh for Western Spinning Reserves
Reserve Activations	=	The number of reserve activations at the 97th percentile of daily reserve activations for days in each two month period of the previous year that had reserve activations.

(b) For Demand Side Resources eligible to offer only Regulation Service, or
Operating Reserves and Regulation Service, the product of (i) the maximum
hourly Operating Capacity (MW) for which the Demand Side Resource may be
scheduled to provide Regulation Service and Operating Reserves, (ii) the amount

of regulation credit support, as appropriate, in \$/MW per day, and (iii) three (3)

days.

Where:

The amount of regulation credit support (\$/MW/day) for each two-month period	=	Price Differential for the same two-month period in the previous year * 24 hours
Two-month periods:	=	January and February March and April May and June July and August September and October November and December
MCP _{Regh}	=	Hourly, time-weighted Market Clearing Price for Regulation Services
Price Differential	=	The hourly differential at the 97 th percentile of all hourly differentials between the Day- Ahead and Hour-Ahead MCPRegh for hours in the two-month period of the previous year when the Real-Time MCP exceeded the Day- Ahead MCP

26.4.3 Calculation of Bidding Requirement

The Bidding Requirement shall be an amount equal to the sum of:

(i) the amount of bidding or nominating authorization that the Customer has requested for use in or during, as appropriate, an upcoming ISO-administered TCC auction, which shall account for all positive bids or nominations to purchase TCCs and the absolute value of all negative offers to sell TCCs; *provided*, *however*, that the amount of credit required for each TCC that the Customer bids or nominates to purchase, whether positive, negative, or zero shall not be less than (a) (2 x \$/MW for one-year TCCs) per MW for two-year TCCs, (b) \$1,500 per

MW for one-year TCCs, (c) \$2,000 per MW for six-month TCCs, and (d) \$600 per MW for one-month TCCs;

- (ii) the approximate amount that the Customer may owe following an upcoming TCC auction as a result of converting expired ETAs into Historic Fixed Price TCCs pursuant to Section 19.2.1 of Attachment M to the OATT, which shall be calculated in accordance with the provisions of Section 19.2.1 regarding the purchase of TCCs with a duration of ten years;
- (iii) the amount of bidding authorization that the Customer has requested for use in an upcoming ISO-administered ICAP auction; and
- (iv) five (5) days prior to any ICAP Spot Market Auction, the amount that theCustomer may be required to pay for UCAP in the auction, calculated as follows:

 $\Sigma \qquad + \\ LES \qquad ICPM_L \times 1000 \times Deficiency_L \\ + \\ ICPM_L \times 1000 \times (\underline{ZCP_L - 1}) \times RQT_L \\ 2$

Where:

S	equals a set containing the following locations: each Locality and Rest of State,
L	equals a location in the set S,
$ICPM_L$	equals the lesser of $UBRP_L$ or LM_L ,
UBRP _L	equals the UCAP based reference point (in k -Month) for location <i>L</i> , as determined on the ICAP Demand Curve for that location (or for NYCA, if <i>L</i> is Rest of State) for the applicable Obligation Procurement Period,
LM_L	equals (1) for any Locality <i>L</i> that is contained within another Locality <i>X</i> , the greater of CPM_L or CPM_X , or (2) for any other Locality or Rest of State, CPM_L ,
- CPM_L equals for location L, $(1 + Margin_L)*MCP_L$,
- CPM_X equals for location X, $(1 + Margin_X)^*MCP_X$,
- $Margin_L$ equals 25% if location L is New York City and 100% if location L is G-J Locality, Long Island or Rest of State,
- MCP_L equals the Market-Clearing Price for location L in the most recent Monthly Auction that established such a price for the month covered by the ICAP Spot Market Auction, measured in dollars per kilowatt-month,
- $Deficiency_L$ equals the number of megawatts of Unforced Capacity that are to be procured in
location L on behalf of that Customer in the ICAP Spot Market Auction in order to
cover any deficiency for that Customer that exists in that location after the
certification deadline for that ICAP Spot Market Auction less any deficiency
calculated for that Customer for any Localities contained within location L, such
value not to be less than zero,
- *ZCP_L* equals the percentage determined in accordance with Services Tariff Section 5.14.1.2 for the applicable ICAP Demand Curves as established at the \$0.00 point for the appropriate Capability Year, and
- RQT_L equals (1) if L is New York City or Long Island, that Customer's share of the
Locational Minimum Unforced Capacity Requirement for location L or (2) if L is
G-J Locality, that Customer's share of the Locational Minimum Unforced Capacity
Requirement for the G-J Locality that remains after reducing this amount by its
share of the Locational Minimum Unforced Capacity Requirements for New York
City or, (3) if L is Rest of State, that Customer's share of the NYCA Minimum
Unforced Capacity Requirement that remains after reducing this amount by (a) its
share of the Locational Minimum Unforced Capacity Requirements for New York
City and Long Island and (b) that Customer's share of the Locational Minimum
Unforced Capacity Requirement for the G-J Locality remaining after accounting for
New York City, as calculated in (2) above; such value not to be less than zero.