Attachment VI

Transmission Security Cost Allocation

Zach Smith

Director, Transmission Planning New York Independent System Operator

ESPWG

September 17, 2015 NYISO

RMR Order

- ¶14: After considering the necessary reliability studies, NYISO must be the entity that makes the determination whether a specific generator is needed to ensure reliable transmission service and thus whether the facility is designated an RMR unit.
- ¶20: NYISO's RMR compliance filing should include tariff provisions specifying a methodology for allocating the costs of RMR agreements, as appropriate cost allocation is essential to ensuring that the rates charged are just and reasonable and not unduly discriminatory or preferential.
- ¶20: NYISO should ensure that any cost allocation regime is consistent with the Commission's cost allocation principles and precedents.

A Few Key Principles

- Primary beneficiaries shall initially be those Load Zones identified as contributing to the reliability violation.
- The cost allocation among primary beneficiaries shall be based upon their relative contribution to the need for the regulated solution.
- The ISO will examine the development of specific cost allocation rules based on the nature of the reliability violation (e.g., thermal overload, voltage, stability, resource adequacy and short circuit).
- Consideration should be given to the use of a materiality threshold for cost allocation purposes.

Current Reliability Cost Allocation Methodology

- Step 1: LCR Deficiency
 - Determine MW deficiencies in meeting LCRs
- Step 2: Statewide Resource Deficiency
 - Use free flow test to determine statewide distribution of Compensatory MW necessary to meet LOLE of 0.1
- Step 3: Constrained Interface Deficiency
 - If NYCA is not resource limited as determined in Step 2, determine bounded regions to which cost responsibility is assigned
- If after completion of Steps 1 through 3 there is a thermal or voltage security issue that does not cause an LOLE violation, it will be deemed a local issue and related costs will not be allocated under the NYISO tariff.

Objectives

- The NYISO proposes to use its current reliability cost allocation methodology to allocate RMR or transmission related costs, with the following revisions:
- Develop a Step 4 in the reliability cost allocation methodology to allocate the costs of a reliability solution (RMR or transmission) to those load zones that contribute to a thermal overload on a Bulk Power Transmission Facility (BPTF), based on load's relative contribution.
- Develop a Step 5 in the reliability cost allocation methodology to allocate the costs of an RMR for non-BPTF reliability needs that are otherwise deemed local.

Bulk Thermal Concept

- N-1-1 analysis results in a single NYCA-wide optimized generator dispatch
- Using that generator dispatch with the most severe first and second contingencies applied to the model, determine how much each load contributes to the power flow on the overloaded element
- Calculate materiality thresholds to identify which loads have a significant contribution to the overloaded element and allocate costs to those loads

Method

- 1. Apply most severe contingency pair to the model with associated optimized generator dispatch
 - An element may be overloaded for various first and second contingencies.
 - The modeling year and contingency pair that result in the highest loading on the element will be used for the cost allocation calculation.
 - In most cases, the 10th year will be the most severe.
 - For an RMR, the last year of the initial RMR term will be used.

- Apply most severe contingency pair to the model with associated optimized generator dispatch
 - Highest loading on Leeds-PV occurred in summer 2024 case (2014 RNA)
 - First contingency: L/O Athens-PV 345 kV
 - Second contingency: L/O Marcy South South tower (41&33)
 - Use the generation dispatch that results from securing the system for this contingency pair in the summer 2024 case.

- 2. Calculate Nodal TDF and MW Flows
 - For each <u>Nodal Load</u>, increase load by 1 MW while simultaneously increasing all supply generation by a total of 1 MW. Each supply generation unit participates relative to that unit's dispatch (i.e., the higher the dispatch, the greater that unit participates).
 - Monitor the change in flow on the overloaded element. This change in flow divided by the change in load (1 MW) is the Transfer Distribution Factor (TDF) for that node.
 - The <u>Nodal TDF</u> represents the percentage of the given load that contributes to the flow on the overloaded element on a permegawatt basis. The sign (+ or -) indicates the direction of flow caused by the node.
 - The <u>Nodal MW Flow</u> represents the amount of MW flow due to the load.
 - Nodal MW Flow = Nodal TDF x Nodal Load

Calculate Nodal TDF and MW Flows

- Generation-to-load transfer analysis to calculate TDFs:
 - a) Serve load within transmission-constrained zones (currently G thru J) by resources within those transmission-constrained zones
 - b) Serve load by remaining resources within the same zone
 - c) Serve load by remaining resources from all surplus zones if necessary

• Example – Zone J:

- Zone J load+losses = 13,055 MW (73% of G-J load)
- Zones G-J generation dispatch + scheduled imports = 14,252 MW
- a) Serve Zone J load from Zones G-J: 73% of 14,252 = 10,456 MW from G-J
- b) Serve Zone J load from remaining Zone J resources: 0 MW available
- c) Serve Zone J load from surplus zones: 13,055 – 10,456 = 2,599 MW from Zones A, C, D, F, K
- Result: Zone J load served from each zone as follows:

	A	в		с	D	E	F	G	н	I	J	к
J	5.1	%	0.0%	8.4%	5.2%	0.0%	0.7%	12.4%	11.9%	0.0%	55.8%	0.4%

- Monitor the change in flow on the overloaded element.
- A Nodal TDF is calculated for every load bus in NYCA.
- Nodal MW Flow the product of load and TDF
- Sample from Leeds-PV results:

Bus	Name	ĸv	Zone	Subzone	TDF	Load	Flow
126741	S CREEK AS	13.8	J	CON_ED	0.06044	310.9	18.79080
126000	SHEN12	13.8	G	CENT_HUD	0.03922	30.1	1.18052
135344	KNGTSCRK	34.5	A	NGRD_WES	0.03490	1	0.03490
136794	OGDENSBG	115	E	NGRD_MVN	-0.00364	15.8	-0.05751
131723	SIDNEY46	46.0	E	NYSEG_EA	-0.01200	13.8	-0.16560

- 3. Identify the Contributing Loads and Flow
 - A nodal load is a <u>Contributing Load</u> if the Nodal TDF is positive (i.e. flow increases in direction of nominal flow on overloaded element).
 - The Nodal MW Flow for each load bus with a positive Nodal TDF is <u>Contributing Flow</u>.
- 4. Calculate Contributing Materiality Threshold
 - Contributing Materiality Threshold represents the percentage of all Contributing Load that flows across the overloaded element.
 - <u>Contributing Materiality Threshold</u> = Sum of all Contributing Flow / Sum of all Contributing Load

- 5. Identify the Helping Loads and Flow
 - A nodal load is a <u>Helping Load</u> if the Nodal TDF is negative or zero (i.e. flow increases in the opposite direction of nominal flow on overloaded element).
 - The Nodal MW Flow for each load bus with a negative or zero Nodal TDF is <u>Helping Flow</u>.
- 6. Calculate Helping Materiality Threshold
 - Helping Materiality Threshold represents the percentage of all Helping Load that flows across the overloaded element.
 - <u>Helping Materiality Threshold</u> = Sum of all Helping Flow / Sum of all Helping Load

- Calculate Contributing Materiality Threshold
 - <u>Contributing Materiality Threshold</u> = Sum of all Contributing Flow / Sum of all Contributing Load
 - Leeds-PV total Contributing Load = 30,506.7 MW
 - Leeds-PV total Contributing Flow = 1,116.1 MW
 - Leeds-PV Contributing Materiality Threshold = 1,116.1 / 30,506.7 = <u>0.03659</u>

Calculate Helping Materiality Threshold

- <u>Helping Materiality Threshold</u> = Sum of all Helping Flow / Sum of all Helping Load
- Leeds-PV total Helping Load = 4,979.4 MW
- Leeds-PV total Helping Flow = -51.3 MW
- Leeds-PV Contributing Materiality Threshold = -51.3 / 4,979.4 = -0.01031

- 7. Calculate Material Subzone Flows
 - <u>Material Subzone Contributing Flow</u>: Summation of Contributing Flow for nodal load buses within the subzone with Nodal TDF greater than or equal to the Contributing Materiality Threshold.
 - <u>Material Subzone Helping Flow</u>: Summation of Helping Flow for nodal load buses within the subzone with Nodal TDF less than or equal to the Helping Materiality Threshold.
 - <u>Net Material Subzone Flow</u>: Summation of Material Subzone Contributing Flow and Material Subzone Helping Flow for each subzone.

8. Calculate Allocated Flow for each subzone

- If the Net Material Subzone Flow for a subzone is positive, the <u>Allocated Flow</u> is equal to the Net Material Subzone Flow.
- If the Net Material Subzone Flow for a subzone is negative or zero, the Allocated Flow for that subzone is zero.

9. Check reasonableness of allocation

- If the total Allocated Flow is less than 60% of the total Contributing Flow, then the Contributing Materiality Threshold will be reduced until the total Allocated Flow is at least 60% of the total Contributing Flow
- 10. Calculate allocation % for each subzone
 - Divide the total Allocated Flow for each subzone by the total of all Allocated Flow in NYCA.

- Identify Material Flows
 - Any load with a TDF greater than or equal to the Contributing Materiality Threshold is identified as a material contributing load.
 - Any load with a TDF less than or equal to the Helping Materiality Threshold is identified as a material helping load.
 - For Leeds-PV, any load bus with a TDF greater than or equal to 0.03659 or less than or equal to -0.01031 would be material.

Bus	Name	KV	Zone	Subzone	TDF	Load	Flow	Material Flow
126741	S CREEK AS	13.8	J	CON_ED	0.06044	310.9	18.79080	18.79080
126000	SHEN12	13.8	G	CENT_HUD	0.03922	30.1	1.18052	1.18052
135344	KNGTSCRK	34.5	A	NGRD_WES	0.03490	1	0.03490	0.0000
136794	OGDENSBG	115	E	NGRD_MVN	-0.00364	15.8	-0.05751	0.0000
131723	SIDNEY46	46.0	E	NYSEG_EA	-0.01200	13.8	-0.16560	-2.28528

		Material	Material Helping			
Zone	SubZone	Contributing MW	MW	Net Material MW	Allocated MW	Allocation %
Α	NGRD_WES	6.438052	0	6.43805	6.438052	0.66%
Α	NYSEG_WE	0.1517	0	0.15170	0.1517	0.02%
Α	NYPA_WES	0.61347	0	0.61347	0.61347	0.06%
В	RG_E	0	0	0.00000	0	0.00%
В	NYPA_B	0	0	0.00000	0	0.00%
В	NGRD_GNS	0	0	0.00000	0	0.00%
С	NGRD_CEN	0	0	0.00000	0	0.00%
С	NYSEG_CE	25.070166	0	25.07017	25.070166	2.58%
С	NYPA_C	1.731292	0	1.73129	1.731292	0.18%
D	NYPA_NOR	0	0	0.00000	0	0.00%
D	NYSEG_NO	0	0	0.00000	0	0.00%
D	NGRD_NTH	0	0	0.00000	0	0.00%
Е	NGRD_MVN	0	-12.781295	-12.78130	0	0.00%
Е	NYSEG_EA	33.660282	-3.342407	30.31788	30.317875	3.12%
Е	NYPA_E	0	-1.80336	-1.80336	0	0.00%
Е	CENT_H_C	0	-0.09306	-0.09306	0	0.00%
F	NGRD_EAS	52.228063	0	52.22806	52.228063	5.37%
F	NYPA_F	0	0	0.00000	0	0.00%
F	NYSEG_ME	9.461901	0	9.46190	9.461901	0.97%
G	NYSEG_HU	0	0	0.00000	0	0.00%
G	CENT_HUD	4.736227	-24.980474	-20.24425	0	0.00%
G	O_R	50.006657	0	50.00666	50.006657	5.15%
G	NYPA_G	0	0	0.00000	0	0.00%
G	CE_UPNY	0	0	0.00000	0	0.00%
Н	NYPA_H	0	0	0.00000	0	0.00%
н	CON_ED_N	19.070725	0	19.07073	19.070725	1.96%
н	NYSEG_BR	28.017295	0	28.01730	28.017295	2.88%
I	NYPA_I	0	0	0.00000	0	0.00%
I	CON_ED_C	101.643288	0	101.64329	101.643288	10.46%
J	CON_ED	646.975488	0	646.97549	646.975488	66.58%
J	NYPA_J	0	0	0.00000	0	0.00%
К	LIPA	0	0	0.00000	0	0.00%
К	NYPA_K	0	0	0.00000	0	0.00%

